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Abstract 

The unstructured-grid SUNTANS model is applied to San Francisco Bay and em

ployed to perform three-dimensional simulations of flow in order to assess the per

formance of high- and low- order scalar transport schemes. The potential impacts of 

climate change are also studied. Using a grid with an average resolution of 50 m, the 

model accurately resolves tidal hydrodynamics in a domain that extends from the 

Pacific Ocean to the western portion of the Delta region, the flow through which is 

approximated with two rectangular boxes as a "false delta". A detailed calibration 

is performed, and we show that the model accurately predicts tidal heights, currents, 

and salinity at several locations throughout the Bay. 

A sensitivity study is presented to understand the effects of grid resolution, the 

turbulence model, and the scalar transport scheme. Three levels of grid refinement are 

performed, and the results of a second-order accurate, TVD scalar transport scheme 

are compared to those with first-order upwinding. Our results show that the best 

convergence rate with respect to grid refinement occurs when the TVD scheme is 

employed. This accuracy degrades when the turbulence model is not employed due 

to a lack of feedback between vertical turbulent mixing and stratification. Significant 

horizontal diffusion associated with first-order upwinding eliminates the necessary 

horizontal salinity gradients required to induce baroclinic circulation and renders the 

results less sensitive to the turbulence model or grid refinement. 

The quantification of numerical diffusion on unstructured grids when employing 

the finite-volume method is accomplished with a novel approach to analytically derive 

diffusion coefficients by extending the Hirt analysis on Cartesian grids to unstructured 
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grids. Two forms of computing the modified equation termed the independent anal

ysis and the combined analysis are employed. Numerical diffusion coefficients are 

overpredicted with the independent analysis which separately derives the modified 

equation for the two types of cells, while the combined analysis which employs a 

recurrence relation for one equation obtains the correct diffusion coefficients. The nu

merical diffusion coefficients are analytically derived for first-order upwinding and the 

second-order scheme which stabilizes central differencing but introduces dispersion. 

First-order upwinding is stable with the most restrictive Courant number constraint 

0 < Co < \ /3 /2 ~ 0.87 when 9 = ir/6, while the second-order scheme is stable 

with 0 < C0 < 2 / \ /6 ~ 0.82 for all 9. An accuracy analysis shows that first-order 

upwinding is first-order accurate in time and space and the second-order scheme is 

second-order accurate in time and space. 

An alternative domain-averaged formulation provides an estimate for numerical 

diffusion without the need for analytical methods. This formulation is particularly 

suited to compare the performance of high- and low- order scalar advection schemes 

for applications in complex geometries, and is applied to San Francisco Bay to assess 

the impact of tidal straining and time scales on numerical diffusion. Over long time-

scales, the TVD scheme is less effective in regions of high tidal dispersion, since 

grid-scale variability resulting from strong straining of the tracer field causes strong 

numerical diffusion regardless of the method employed. For short time scales, the net 

diffusion coefficient is consistently smaller for the TVD scheme compared to first-order 

upwinding. 

The unstructured-grid SUNTANS model is subsequently employed to investigate 

the implications of sea-level rise on salinity intrusion and estuarine circulation under 

different hydrologic scenarios in North San Francisco Bay. Rising sea levels reduce 

the impact of bottom-generated turbulence causing less vertical mixing. This leads 

to stronger gravitational circulation and higher vertical stratification, resulting in 

enhanced salinity intrusion. Under low-flow conditions, salinity intrusion is the largest 

because sea-level rise has a greater impact due to weaker vertical stratification. Strong 

flows increase the strength of the gravitational circulation, resulting in higher vertical 

stratification, which leads to the nonlinear feedback between vertical mixing and 
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stratification. The effect of sea-level rise on vertical stratification and consequently 

salinity intrusion is reduced owing to the suppression of mixing by stratification. 
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9 Angle between edge a and the flow direction 
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< • > Tidally averaged 

V Laplacian 
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7 Cross-sectionally averaged 
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Chapter 1 

Introduction 

1.1 Motivation 

Estuaries such as San Francisco Bay are transitional regions that lie between salty 

ocean water at the mouth and freshwater upstream. The estuarine circulation is 

complex with interactions of strong tidal currents, bathymetric variability and den

sity driven exchange born of the competition between ocean and fresh waters. The 

complexity and enormous variability in the forcing makes it difficult to study the 

transport of substances in estuaries, which is crucial given the variety of ecosystems 

in these large water bodies that traverse heavily populated areas. Estuaries are also 

extremely fragile environments that are highly susceptible to human activities. Un

derstanding the dynamics of estuarine flow is therefore vital to maintain healthy 

estuaries throughout the world. 

Numerical models are important tools in the study of circulation and transport in 

estuaries and coastal oceans. Two- and three-dimensional models have been applied 

to San Francisco Bay and extensively calibrated to yield results that match field data 

reasonably well (Cheng et al. 1993; Cheng and Smith 1998; Gross et al. 1999b; Gross 

et al. 1999a; Gross et al. 2005; Gross et al. 2009; MacWilliams and Cheng 2006; 

Mac Williams et al. 2007). These models are used to obtain a detailed understanding 

of hydrodynamics and transport in the Bay and the influence of mixing and forcing 

mechanisms on the circulation. 

1 
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The transport and mixing of salt, pollutants, sediments and nutrients play a fun

damental role in sustainable estuary management. Our ability to predict transport 

and mixing is limited by the accuracy of scalar advection schemes in numerical mod

els, and the adequacy of such models to resolve physical processes. The physics that 

must be resolved include large scale mixing mechanisms dictated by grid resolution 

and small scale turbulent mixing mechanisms determined by turbulence parameter-

izations. Employing numerical models to isolate the effects of grid resolution, the 

turbulence model and the scalar advection scheme, our objective is to assess the 

effects of these mechanisms to enable highly accurate estuarine simulations. 

This dissertation employs the coastal ocean simulator SUNTANS (Stanford Un

structured Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simulator) (Fringer 

et al. 2006) to perform three-dimensional hydrodynamic simulations of San Francisco 

Bay. SUNTANS is well-suited to simulate the flow in San Francisco Bay because it 

employs an unstructured grid, hence enabling flow features to be resolved where there 

is bathymetric variability. Successful application of numerical models to San Fran

cisco Bay depends heavily on accurate implementation of the advection scheme. An 

investigation into methods to quantify numerical diffusion is valuable for the devel

opment of accurate numerical modeling tools to simulate estuarine flows and predict 

climate change impacts. 

1.2 San Francisco Bay 

San Francisco Bay consists of two distinct subestuaries: the northern reach lies be

tween the Golden Gate and the confluence of the Sacramento-San Joaquin Delta, 

and comprises San Pablo Bay, Suisun Bay and Central Bay, and South Bay extends 

southward from the Golden Gate to San Jose (Fig. 1.1). The only outlet to the Pacific 

Ocean is through the Golden Gate channel, a 1.5 km wide channel with a maximum 

depth of 110 m that connects the Central Bay to the Gulf of Farallones in the coastal 

Pacific Ocean. Carquinez Strait connects Suisun Bay to San Pablo Bay, where the 

deepest part of the channel is over 30 m deep. San Francisco Bay is a shallow estuary 

with an average depth of 2 m, consisting of large areas of intertidal mudflats in the 
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Figure 1.1: The San Francisco Bay model domain and bathymetry (in m below MSL). 

eastern and southern parts of the South Bay, and the northern parts of San Pablo 

Bay and Suisun Bay. Along the longitudinal axis of the Bay is a narrow main channel 

between 10 to 18 m deep. 

Spatial and temporal variability in San Francisco Bay are characterized by tides, 

freshwater inflows, and exchange with coastal waters (Walters et al. 1985; Conomos 

et al. 1985; Conomos 1979a). Tides in San Francisco Bay are mixed semi-diurnal and 

diurnal with pronounced spring-neap variability. The tidal prism is approximately 

1.6 km3 or nearly a quarter of the total volume of the Bay. Ocean tides propagate 

through the narrow opening at Golden Gate, and the nature of the waves is changed 

by the influence of bathymetry in Central Bay as they propagate to the northern and 

southern reaches. Tides in the northern reach are progressive waves which are altered 

at the constrictions and gradually become a mixture of progressive and standing 
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waves. In the southern reach, tides become a standing wave when incoming tides 

from Central Bay are superimposed upon reflections from the south end of the Bay. 

San Francisco Bay receives most of its freshwater inflows from the Sacramento-San 

Joaquin Delta. The Delta receives runoff from about 40 percent of the land area of 

California and about 50 percent of California's total streamflow. The Mediterranean 

climate controls seasonal patterns of freshwater inflows such that inflows are high 

in winter (rainfall runoff) and spring (snowmelt runoff) and low in summer. About 

25 percent of the inflows are pumped into California's water system and diverted to 

Southern California and the Central Valley, and 10 percent of the inflows provide 

freshwater supplies for local domestic, industrial and agricultural use. 

The northern reach of San Francisco Bay is a partially-mixed estuary dominated 

by seasonally varying freshwater inflows. Inflows create horizontal salinity gradients, 

with freshwater entering through the Delta having salinities of less than 1 psu, and 

salinities increasing downstream to approach 30 psu near the mouth of the estuary. 

The horizontal salinity gradient drives gravitational circulation as freshwater flows 

seaward on the surface and salty water flows landward at depth. Superimposed on 

this is the influence of tidal stirring and mixing, leading to tidal asymmetry that 

will modify the gravitational circulation in a phenomenon known as strain-induced 

periodic stratification (SIPS) (Simpson et al. 1990). The net effect of these processes 

is to adjust the longitudinal salinity gradient throughout North San Francisco Bay. 

Inflows into South Bay are less than one tenth of freshwater inflows into the 

northern reach and are too weak to stratify the water column and create estuarine 

circulation. Salinities are higher and more uniform compared to the northern reach, 

and evaporation makes the South Bay saltier in the summer than the coastal ocean, 

resulting in the formation of an inverse estuary (Pritchard 1994; Nunes et al. 1990). 

In the winter, high inflows entering the Bay through the Delta pass through Central 

Bay to reach South Bay. Gravitational circulation results as fresh water on the surface 

flows southward over salty ocean water on the bottom. 

Seasonal variability in nearshore oceanic circulation in the Pacific results in sea

sonal variability in the composition of the coastal waters that enter San Francisco 

Bay (Largier 1996), and this has important implications for seasonal phytoplankton 
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dynamics (Cloern and Nichols 1985). Upwelling and downwelling influence the tem

perature and salinity of nearshore coastal waters in San Francisco Bay. Along the 

California coast, coastal upwelling occurs in the summer as northerly winds cause 

Ekman transport (Sverdrup et al. 1942) of surface water away from the coast, and 

surface waters are replaced by deeper, colder and saltier ocean water (Bakun 1973; 

Sewing et al. 1996). Deep waters are rich in nutrients which enhance phytoplank

ton productivity. Downwelling reduces biological productivity and transports surface 

waters rich in dissolved oxygen deeper into the ocean. In the winter, southerly winds 

cause Ekman transport which moves surface waters towards the coast, resulting in 

the piling up and sinking of water known as coastal downwelling. 

Ocean salinities varying by only 3 psu between summer and winter months (Conomos 

et al. 1979) have a smaller influence on seasonal variability in the Bay compared to 

inflows varying widely from 300 m 3 / s in the summer to 2000 m 3 /s in the winter. 

Stratification is strongest in the winter in North Bay when river inflows are highest. 

Salinity in the northern reaches and Central Bay is strongly influenced by Delta in

flows. During periods of low inflows, sea water penetrates upstream to the confluence 

of the Sacramento and San-Joaquin rivers, and high inflows result in enhanced salin

ity stratification and gravitational circulation with a salt wedge developing around 

Carquinez Strait (Conomos 1979a; Kimmerer 2002). 

San Francisco Bay is one of the most productive ecosystems in the world (Kim

merer 2004; Nichols et al. 1986; Conomos 1979b; Hollibaugh 1996), with large areas 

of salt marshes and intertidal flats that perform critical biological and environmen

tal functions, and hence serve as an important habitat for birds, fish and wildlife. 

Human interference through activities such as diking of marshes, hydraulic mining 

and damming of rivers in the watershed have drastically reduced the area and size of 

the Bay, and altered the types and numbers of organisms living in the estuary. As 

a consequence of the loss of wetlands and changes in land use, the surface area of 

the Bay has decreased from 2000 to 1290 km2 and the Delta from 2000 to 9 x 10 - 5 

km2 (Cohen 2000). Pollution is increasingly becoming a problem in the estuary as 

pollutant discharge from stormwater runoff, wastewater outfalls and oil spills enter 

the Bay. These problems are likely to be intensified with population growth and 
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global climate change. 

1.3 Potential climate change impacts 

We will use the numerical model of San Francisco Bay to assess the potential impacts 

of climate change in an estuarine environment. Trends towards urbanization have led 

to increasingly populated low-lying coastal areas where a large portion of economic 

activity is concentrated. Coastal zones are also characterized by a rich diversity of 

ecosystems and habitats. Sea-level rise has profound implications for coastal popula

tions, as coastal zones are at risk of inundation and increased vulnerability to coastal 

flooding due to storm surges. In addition, sea-level rise has substantial impacts on 

freshwater resources and habitats, prompting research into possible implications for 

ecosystems that lie at the interface between land and ocean. 

Global sea level has been increasing at an unprecedented rate over the past 100 

years (Church and White 2006). Tide gauge data estimates sea-level rise to be in the 

range of 0.1 m to 0.2 m over the last century. In recent years, the rate of sea-level rise 

has increased significantly over that of previous decades (Church and White 2006). 

Semi-empirical models by Rahmstorf (2007) predict sea-level rise by 2100 to be on 

the order of 1 m exceeding estimates provided by the Intergovernmental Panel on 

Climate Change (IPCC 2001; IPCC 2007) of between 0.18 m to 0.59 m. The range 

in sea-level rise predictions in the next century is accounted for by uncertainties in 

global temperature projection and the rate of melting of ice sheets. Climate models 

and satellite data indicate that sea-level rise is not expected to be uniform around 

the world because of geomorphological variability. 

1.3.1 Potential land loss and coastal flood risk 

Potential land loss due to sea-level rise occurs as a result of inundation and erosion 

of coastal areas. Inundation maps have been employed to determine the intertidal 

areas that are at threat under different sea-level rise scenarios (Li et al. 2009; Cooper 

et al. 2008; Titus and Richman 2001; Hennecke 2004; Gornitz et al. 2001; Knowles 
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2010). The inundation maps are subsequently used to identify coastal populations 

and critical infrastructure most at risk, from which adaptation strategies can be 

evaluated, tested and implemented. Densenly populated coastal cities indicate huge 

economic impacts of sea-level rise, including costs of relocation, coastal protection 

and reconstruction. A study of potential inundation in San Francisco Bay by Knowles 

(2010) shows wetlands in North Bay and developed areas in Central and South Bays, 

including San Francisco and Oakland International Airports are most vulnerable to 

inundation. A 1.0 m sea-level rise would threaten existing commercial, residential and 

industrial property in the Bay valued at 48 billion (in year 1990 dollars) (Heberger 

et al. 2009). 

Sea-level rise increases the vulnerability of coastal areas to flooding due to storms 

surges. The effect of storm surges are superimposed over a higher mean sea level re

sulting in greater destructive ability of such events. Shoreline erosion directly impacts 

coastal communities, as beaches and dunes which serve as flood buffers are removed. 

1.3.2 Impact on freshwater resources and habitats 

Sea-level rise leads to an increase in the salinity of surface water and ground water 

through salt water intrusion. Rising sea levels result in a landward shift of the es

tuarine salinity field, threatening freshwater supplies upstream (Williams 1987; Hull 

and Titus 1986). In the San Francisco Bay-Delta system which provides freshwater 

supplies to Southern California and the Central Valley, and for local domestic, indus

trial and agricultural use, salt water intrusion upstream will result in water intakes 

that might draw on salty water during dry periods. Coastal aquifers recharged by 

freshwater upstream are also likely to become saline as salt water is pushed upstream 

(Werner and Simmons 2009; Oude Essink 1999; Bobba 2002; Sherif and Singh 1999; 

Meisler et al. 1984). The availability of freshwater in coastal areas interacts with 

other factors, including changes to the local hydrology due to climate change (Miller 

et al. 2003; Dettinger et al. 2004; Knowles and Cayan 2002; Knowles and Cayan 

2004), and changes in demand due to population growth and urbanization. The 

combination of these factors is likely to compound water stress in coastal areas. 
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Wetlands such as salt marshes and mangroves are located close to sea level and 

are particularly susceptible to sea-level rise. Wetlands perform critical biological 

and environmental functions, such as preserving shorelines, providing recreation and 

economic benefits, creating protection from storms, and serving as an important 

habitat for birds, fish and wildlife. Rising sea levels accelerate erosion and new 

wetlands are formed inland as previously dry areas are flooded (Titus 1988). The 

wetlands disappear if the sea level rises faster than wetlands are being formed inland 

(Reed 1990; Reed 1995). In developed areas, impediments to landward migration may 

also exist in the form of dikes, roads and buildings. Intrusion of salt water increases the 

salinity of habitats upstream and may have significant impacts on marine ecosystems 

that are unable to tolerate high salinity (Schallenberg et al. 2003; Short and Neckles 

1999). 

1.4 Hydrodynamic modeling 

Hydrodynamic modeling capabilities have improved significantly in the last decade as 

a result of advances in computing power. In order to obtain highly accurate models, 

the ability to resolve physical processes is crucial. Grid resolution dictates which pro

cesses are resolved and turbulence closure models determine the parameterization of 

unresolved small scale turbulent mixing mechanisms. A highly efficient model com

promises resolution by using a coarser grid and turbulence closure models to param

eterize mixing, such as Reynolds-averaged (RANS) simulations to obtain solutions in 

a shorter time frame. On the other hand, direct numerical simulations (DNS) permit 

the full range of spatial and temporal scales of turbulence to be resolved, which makes 

them prohibitively expensive to implement for large-scale environmental flows. For 

the same grid resolution, the accuracy of different hydrodynamic models varies and 

is dependent on the numerical methods used to solve the governing equations. In the 

following sections, we review two- and three-dimensional models applied in estuaries 

and coastal oceans, and describe hydrodynamic modeling efforts in San Francisco 

Bay. 
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1.4.1 Depth-averaged models 

Two-dimensional hydrodynamic models solve the depth-averaged Navier-Stokes and 

continuity equations using finite difference, finite volume or finite-element schemes. 

Such models simulate barotropic flows while ignoring baroclinic effects. The develop

ment of depth-averaged hydrodynamic models in estuaries began with explicit numer

ical methods (Leendertse 1967). Such schemes have a time step limitation based on 

the CFL condition associated with the speed of propagation of fast free-surface grav

ity waves, resulting in a computationally inefficient approach. More recently, Casulli 

(1990) solved the two-dimensional shallow water equations numerically with a semi-

implicit scheme, which has the advantage of being more robust and computationally 

efficient. 

Two-dimensional simulations are sufficient to understand the tidal pumping mech

anism, which results mostly from tidal asymmetry of the currents. Signell and But-

man (1992) employed the two-dimensional TRIM model (Casulli 1990) to simulate 

horizontal exchange of water between Boston Harbor and the coastal ocean. By track

ing Lagrangian particles, they showed that dispersive characteristics are extremely 

sensitive to the location and timing of the release of particles. Their simulations 

matched well with residual current data near the inlet of the Harbor, yet deviated 

from data on the shelf outside the Harbor, indicating the importance of density-driven 

currents. 

1.4.2 Three-dimensional models 

Baroclinic effects are included in three-dimensional models. Such models resolve 

vertical variations in velocity and scalar concentrations, allowing processes such as 

vertical shear flow dispersion, vertical steady exchange and stratification to be in

cluded. The major differences among three-dimensional models are in the choices of 

the turbulence closure schemes, vertical coordinate systems and numerical methods 

for time-advancement. 

The use of turbulence closure schemes in three-dimensional models enables the 
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parameterization of turbulence with an eddy-viscosity and eddy-diffusivity. Two-

equation turbulence models such as the k — e model, k — LU model and k — kl model 

are widely used. The most popular model is the Mellor-Yamada level 2.5 turbulence 

closure model (Mellor and Yamada 1982), which has been successfully implemented in 

the POM coastal ocean model by Blumberg and Mellor (1987). Two-equation models 

solve two partial differential equations to compute the turbulent velocity scale and 

length scale. The performance of turbulence closure models implemented using a 

generic length scale method (k — kl, k — e, k — uS) was compared in an application 

to the Hudson river estuary (Warner et al. 2005). The authors showed that numer

ical simulations of estuarine stratification are relatively insensitive to the choice of 

the turbulence closure schemes, although the stability functions that determine the 

influence of stratification can be important. 

A range of vertical coordinate systems have been implemented in ocean models, 

including the z-coordinate in SUNTANS (Fringer et al. 2006), the sigma-coordinate 

in POM (Mellor 1996) and the s-coordinate in ROMS (Shchepetkin and McWilliams 

2005). Terrain-following coordinates have the advantage of providing smooth repre

sentation of bottom topography. The sigma coordinate is equidistant in the vertical, 

while the s-coordinate is stretched vertically to provide higher resolution near the 

surface, and consequently a better representation of the mixed layer. The terrain-

following coordinates, however, lend themselves to a pressure gradient error giving 

rise to unrealistic flows, which does not arise with the z-coordinate (Haney 1991). 

Methods to reduce the pressure gradient error in terrain-following coordinates are 

described in Shchepetkin and McWilliams (2005). 

A popular choice for three-dimensional models is to use a mode-splitting algorithm 

for time-advancement (Blumberg and Mellor 1987). Using this approach, a split

ting algorithm is employed for the external or barotropic and internal or baroclinic 

modes to reduce computational effort. The external mode (two-dimensional vertically 

integrated equations) is solved independently from the internal mode (full three-

dimensional equations). The stability requirement for the external mode is related 

to the free surface gravity wave propagation and is governed by the CFL (Courant-

Friedrichs-Levy) condition, hence requiring the use of a small time step. The internal 
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mode is related to the internal wave propagation, and stability is achieved by using 

a larger time step. Mode-splitting can result in inconsistencies between the internal 

and external modes (Higdon and Bennett 1996; Hallberg 1997). Casulli and Cheng 

(1992) introduced a semi-implicit formulation to directly solve the three-dimensional 

governing equations without requiring any form of splitting. Employing the Eulerian-

Lagrangian discretization for advection of momentum, the algorithm is very stable 

and permits the use of large time steps to improve computational efficiency. 

1.4.3 San Francisco Bay 

A range of numerical models have been applied to simulate circulation in San Fran

cisco Bay. These include cross-sectionally-averaged one-dimensional models, depth-

averaged two-dimensional models and three-dimensional models capable of simulat

ing the full flow field. Earlier models of San Francisco Bay are one-dimensional, such 

as the Delta Simulation Model (DSM2) and the link-node model. DSM2 is a one-

dimensional, water quality and particle-tracking model developed by the California 

Department of Water Resources (Anderson and Mierzwa 2002), which has been pri

marily applied in the Sacramento-San Joaquin Delta for particle tracking purposes 

(Kimmerer and Nobriga 2008; Sommer et al. 1993). Link-node models discretize 

the flow domain into channel links connected by nodes. Nelson and Lerseth (1972) 

applied a linked-node model to South San Francisco Bay. 

Finite-volume and finite-element methods are employed in two- and three- dimen

sional models. The RMA (Resource Modelling Associates)-based models, such as 

RMA-2V and RMA-10 employ finite-element methods for estuarine hydrodynamics 

and salt transport (King and Norton 1978; King 1993). King and Rachiele (1990) 

performed a modeling study of the San Francisco Bay-Delta system using RMA-10 to 

evaluate the impacts of channel geometry on salinity intrusion and currents. Finite-

volume methods were introduced in San Francisco Bay with the Semi-Implicit-3D 

Model (SI-3D) and the TRIM family of models. Smith (2006) developed SI-3D to 

simulate density-driven gravitational circulation and applied the model to perform 

three-dimensional particle tracking in the San Francisco estuary (Smith et al. 2005). 
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The TRIM family of models have been extensively applied to San Francisco Bay. 

Cheng et al. (1993) developed a two-dimensional depth-averaged model of San Fran

cisco Bay with TRIM2D (Casulli 1990), which is calibrated and validated with a large 

set of surface elevation and current data. The two-dimensional TRIM model has been 

implemented in the San Francisco Bay Marine Nowcast System (Cheng and Smith 

1998), and realtime Nowcast model results are available for download. The TRIM3D 

model (Casulli and Cattani 1994) (three-dimensional version of TRIM2D) has been 

applied to San Francisco Bay to study hydrodynamics resulting from salinity-induced 

baroclinic circulation. A conservative transport method and a two-equation turbu

lence closure model were added to TRIM3D by Gross et al. (1999b), and the resulting 

model was used to investigate the effects of stratification in South Bay. Gross et al. 

(2009) presented the results of TRIM3D as applied to the entire San Francisco Bay, 

and details of the calibration are presented along with an assessment of model perfor

mance which performs extremely well throughout the Bay. The UnTRIM model (Ca

sulli and Walters 2000), which is the unstructured version of TRIM3D and is the 

methodology (i.e., numerical method, unstructured grids) upon which the SUNTANS 

model (Fringer et al. 2006) is based, has also been applied to San Francisco Bay 

by Mac Williams and Cheng (2006). 

1.5 Mixing mechanisms in estuaries 

In this section, we review mixing processes in estuaries which range from turbulent 

mixing at small scales to dispersive mechanisms associated with tides, winds and 

density-driven flows at large scales. To compare the relative importance of various 

dispersion mechanisms, we investigate the salt balance from the cross-sectionally and 

tidally-averaged advection-diffusion equation. 

Cross-sectionally and tidally-averaged salt transport can be described quantita

tively using the advection-diffusion equation, with rivers advecting salt seaward and 

dispersive processes carrying salt into the Bay. The net exchange is given by 

d< s > _ _ d<s> d / d< s>\ 

dt dx dx \ dx J 



www.manaraa.com

CHAPTER 1. INTRODUCTION 13 

where < • > indicates tidal averaging, T indicates cross-sectional averaging, u is the 

along-channel velocity, s is salinity, x is the coordinate along the main channel and 

K is the longitudinal dispersion coefficient. The first term on the right-hand side 

describes advective flux, and the second term describes dispersive flux. The disper

sive flux mechanisms include shearflow dispersion, steady exchange and tidal pump

ing/tidal trapping. The steady exchange resulting from vertical structure is attributed 

to gravitational circulation created by longitudinal salinity gradients. 

1.5.1 Salt flux decomposition 

The classical approach to decomposing estuarine salt fluxes follows the method in 

Fischer et al. (1979). The decomposition of the velocity and salinity profiles is given 

by 

u(x, y, z, t) = ua + uc(x, t) + us(x, y, z) + u'(x, y, z, t), (1.2) 

s(x, y, z, t) = sa + sc{z, t) + ss(x, y, z) + s'(x, y, z, t), (1.3) 

where ua =< u > and sa =< s > are cross-sectionally and tidally-averaged terms, 

uc = u — ua and sc = s — sa are cross-sectionally averaged and tidally varying terms, 

us = < u > —ua and ss =< s > —sa are tidally-averaged and cross-sectionally varying 

terms, and u' and s' are cross-sectionally and tidally varying terms. The subtidal salt 

flux is then given by 

F = < us >= uasa+ < ucsc > +usss+ < u's' > . (1-4) 

The first term on the right-side is identified as the advection term, which removes 

salt from the estuary, and the remaining three are dispersive terms, which add salt 

to the estuary. < ucsc > is the tidal flux, usss is the exchange flux and u's' is the 

oscillatory shear flow. 
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1.5.2 Shear flow dispersion 

Shear flow dispersion in estuaries is determined from shear flow dispersion in rivers 

with the addition of an oscillatory component (Fischer et al. 1979). The longitudinal 

dispersion coefficient due to shear flow in rivers is given by 

K = Iu2
evTc, (1.5) 

where Tc = W2/eH is the time scale for transverse mixing, W is the width of the 

channel, e# is the horizontal eddy diffusivity, Udev is the deviation of mean flow 

velocity from the cross-sectional variation of the depth-averaged velocity, and / ~ 0.1. 

This is applicable only if the oscillating period is longer than Tc, ie. T » Tc, the 

cross-section is wide and shallow, and density effects are absent. For the case that 

the period is shorter than Tc, ie. T <C Tc, there is no shear flow dispersion, since 

transverse variations produced by the shear are eliminated when the flow reverses. 

The longitudinal dispersion coefficient in an estuary due to shear flow (Fischer 

et al. 1979) is given by 

K = 0Aul2T[(l/T')f(T')], (1.6) 

where T" = T/Tc is the dimensionless time scale for cross-sectional mixing, and the 

function f(T') has a maximum of approximately 0.8 when T" « 1, and has the limits 

f(T) -> (1/T') for T > 1 and f(T') -> 2.6T' for T < 1. 

1.5.3 Tidal pumping/ t rapping 

Geometrical variations result in tidal pumping and tidal trapping mechanisms for 

horizontal mixing in estuaries. In large estuaries, tidal pumping can result as a 

consequence of Earth's rotation, as currents are deflected to the right in the Northern 

hemisphere and to the left in the Southern hemisphere. A net counter-clockwise 

circulation results in the Northern hemisphere as flood and ebb currents are deflected 

toward the right and left banks, respectively, as viewed by the flood currents. 

Tidal pumping is also caused by the interaction of tidal flow with irregular bathymetry 

at a constriction (Stommel and Farmer 1952). Ebb currents flow into the ocean as a 
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confined jet, while the flood currents draw flow radially from all around the mouth 

as a potential sink. The jet-sink structure creates lateral salinity gradients, which 

results in a net exchange of scalars. In San Francisco Bay, the jet-sink structure is 

observed in the area between Golden Gate and the offshore sand bar (Largier 1996). 

The tidal outflow jet is scaled by the width of the channel at the westernmost end of 

the mouth and will extend about 15 km offshore. 

The effects of side embayments and small branching channels on dispersion is 

termed tidal trapping. The trapping mechanism occurs as the phases of currents 

in the side channels are different from the main channel producing a net horizontal 

dispersion (Schijf and Schonfled 1953). Okubo (1973) suggested a model for the 

trapping mechanism. Parameterizing for a tidal flow with velocity u — uocos(cot), a 

trap to channel volume ratio of rv and a characteristic residence time in the trap of 

k~1, the effective longitudinal dispersion coefficient is given by 

T( _ K rvu0 . . 
l + rv 2k{l + rvy{l + rv + a/k)' K'> 

where K' is the longitudinal dispersion coefficient in the main channel. 

1.5.4 Gravitational circulation 

The steady exchange resulting from salt water flowing landward along the bottom and 

fresh water flowing seaward at the surface is referred to as gravitational circulation 

(Hansen and Rattray 1965). This baroclinic flow is driven by a longitudinal density 

gradient in estuaries. The strength of gravitational circulation can be estimated by 

assuming a balance between friction and the baroclinic pressure gradient caused by 

the longitudinal salinity gradient (Hansen and Rattray 1965), 

I ^ ~ e ^ , (1.8) 
p dx dz2 

where P = p(l + (3s)gH is the pressure, p is the density, s is salinity, g is the 

acceleration due to gravity, (3 is the coefficient of salt expansivity, H is the water 

depth, e is the eddy diffusivity, x is measured upstream from the mouth of the estuary 
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and z is measured upward from the water surface. Eq. (1.8) can be used to derive a 

velocity scale for the exchange flow (Monismith et al. 2002) 

UGC ~ ^ — , (1.9) 

where | | is the longitudinal salinity gradient. The balance between horizontal ad

vection of the salinity gradient and vertical diffusion of the vertically varying salinity 

perturbation, s'v, defined as sy = ~s~v + s'v(z) is 

so that 

s'v~ ^AM . 1.11 

The along-channel salt flux due to the gravitational circulation is then approximated 

with 

(Rn\2 (^)3 H8 

F = UGCs'v ~ [P9) [f} H . (1.12) 

The strength of the exchange flow varies over the tidal time scale and with neap-

spring variability. During neap tides, vertical mixing is weak leading to higher vertical 

stratification, which further decreases vertical mixing and causes stronger gravita

tional circulation. On the tidal time scale, gravitational circulation is reinforced 

through tidal shear. Simpson et al. (1990) introduced the term tidal straining to 

describe the situation in which the oscillatory vertical shear of a tidal boundary layer 

flow acts on the horizontal salinity gradient to produce tidal variations in stratifi

cation. During ebb tides the stabilizing buoyancy flux decreases mixing, leading to 

a nonlinear feedback mechanism between stratification and vertical mixing. During 

flood tides the destabilizing buoyancy flux increases vertical mixing to destratify the 

water column. The phenomenon is known as strain-induced periodic stratification 

(SIPS). Observations by Stacey et al. (2008) and Geyer et al. (2000) confirmed the 

presence of tidal variations in mixing intensity due to straining in real estuaries, while 
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Burchard and Rennau (2007) employed a two-dimensional model to demonstrate the 

phenomenon. 

The balance between turbulent mixing and stratification determines the conditions 

in which SIPS occurs, and Monismith et al. (1996) defined the horizontal Richardson 

number Rix to parameterize the onset of stratification 

Rix = dx
9 , (1.13) 

K 

where u* is the friction velocity. When Rix is greater than the critical value which 

is approximately 0.25 in San Francisco Bay, runaway stratification occurs. Runaway 

stratification refers to a numerical artifact in which stratification grows indefinitely. 

1.5.5 Tidal random walk 

A conceptual model proposed by Zimmerman (1986) describes the interaction of 

the tidal flow with a deterministic system of residual eddies generated by variations 

in topography. Lagrangian trajectories associated with such a flow are extremely 

complex, with particles exhibiting a "tidal random walk". An effective dispersion 

coefficient for the "tidal random walk" has the form 

K = B{vE,\L)UtideLtide, (1.14) 

where £/tide is the velocity of the tidal flow, Ltide is the tidal excursion length, vE 

is the ratio of the energy of the eddies to the tidal flow, and A^ is the ratio of the 

tidal excursion length to the eddy size. The function B(UE,XL) —> 1 as vE —> 1 and 

\ L —» 1. Based on this theory, Zimmerman (1976) demonstrated the presence of 

chaotic stirring in the Dutch Wadden Sea, and computed dispersion coefficients that 

match observations. 
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1.5.6 Horizontal turbulent mixing 

Three-dimensional turbulent motions provide a mechanism for horizontal dispersion 

in estuaries. The horizontal turbulent diffusivity has the form 

K = ClU*H, (1.15) 

where C\ is a constant between 0.4 and 0.6 (Fischer et al. 1979), u* is the friction 

velocity and H is the water depth. The horizontal turbulent diffusivity is 0.002 — 

0.06 m2 /s , and several orders of magnitude smaller than typical values of horizontal 

mixing coefficients for estuaries, which are in the range 50 — 200 m 2 / s (Signell and 

Geyer 2007). 

1.6 Modeling scalar t ransport 

Transport of salt, heat, nutrients, pollutants and organisms in surface waters play a 

fundamental role in maintaining healthy coastal and ocean environments. Our ability 

to predict transport in surface water flows is limited by available computing resources 

to accurately simulate fluid dynamical processes using numerical models. Quantifica

tion of numerical diffusion is crucial to assess the performance of low-and-high order 

advection schemes in order to select a scalar advection scheme with desirable proper

ties. The development and implementation of numerical modeling tools to accurately 

simulate surface water flows and predict environmental impacts is dependent on the 

choice of an effective scalar advection scheme. 

A review of advection schemes in ocean general circulation models is provided 

in Gerdes et al. (1991). They found that the main properties relevant for climate 

simulations depend not only on the formulation of the mixing parameterization, but 

also on the the choice of the advection scheme. Gross et al. (1999a) evaluated 

advection schemes for simple test cases and estuarine salinity simulations in South San 

Francisco Bay. Comparisons of the advection schemes showed that results for simple 

test cases differ from those of the estuarine simulations, where the most important 

properties for accurate salinity predictions in dispersive regions are stability and mass 
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conservation. The performance of advection schemes in estuarine simulations varies 

with location, and large numerical errors are expected with first-order upwinding 

in less dispersive regions, even though the performance of first-order upwinding is 

comparable to higher-order schemes in dispersive regions. Smaoui and Radi (2002) 

employed a three-dimensional ocean model to simulate the dynamics of the English 

Channel. A comparison of advection schemes shows the flux-limiting schemes are 

effective in reducing numerical diffusion present in first-order upwinding, and also in 

eliminating oscillations caused by non-limiting higher-order schemes. 

An analytical derivation of numerical diffusion on Cartesian grids was proposed 

by Hirt (1968) using heuristic stability theory. The author investigated the compu

tational stability of finite difference equations by determining the modified partial 

differential equation for a simple linear equation and a set of coupled nonlinear equa

tions. Expanding each of the terms in a Taylor series, the finite-difference equation is 

reduced to a differential equation. The lowest-order terms in the expansion represent 

the modified partial differential equation, and the higher-order terms refer to trunca

tion errors which are used to determine the order of accuracy and consistency. Using 

the modified equation, Warming and Hyett (1974) characterized the dissipative and 

dispersive properties of a scheme, and established connections between the modified 

equation and the von Neumann method. Difficulties in employing Hirt analysis (Hirt 

1968) on unstructured grids exist due to asymmetries between two types of cells. As 

a consequence, neighbouring cells may not be characterized by the same modified 

equation which leads to inconsistency (Bouche and Ghidaglia 2005). On nonuniform 

Cartesian grids and Curvilinear grids, inconsistent discretizations also arise if the grid 

spacing is not quasi-uniform and the dependent variables are defined at the center of 

the cells (Turkel 1986). 

In numerical models of ocean circulation, the time evolving, spatially varying 

flow makes it close to impossible to analytically derive numerical diffusion coefficients 

associated with the transport of scalars. This has led to the introduction of a variety of 

methods aimed at assessing numerical diffusion properties in ocean models. Burchard 

and Rennau (2007) implemented a method to calculate physical and numerical mixing 

of tracers in ocean models. They defined physical mixing as the turbulent mean scalar 
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Figure 1.2: Cell i with east and west faces indicated by e and w, respectively. 

variance decay rate and numerical mixing due to discretization errors of the transport 

scheme as the difference in decay rate between the advected square of the tracer 

variance and the square of the advected scalar. The diagnostic method was applied 

to the Western Baltic Sea, where numerical mixing was shown to have a magnitude 

comparable to physical mixing (Rennau and Burchard 2009). 

1.6.1 Scalar advection schemes 

In this section we describe advection schemes by considering the one-dimensional 

discretization of the scalar advection equation with constant velocity UQ. Using an 

explicit time discretization on a Cartesian grids yields 

where st are cell-centered quantities, se and sw are respectively quantities on the east 

and west cell faces (Fig. 1.2), At is the time step and Ax is the width of cell i. 

First-order upwind 

For first-order upwinding, the quantity se is set equal to the cell centered value s; in 

the upwind cell given by 

/ St u0 > 0 , 
se= i (1.17) 

^ Sj+i otherwise, 

and it is assumed that se(i — 1) = sw(i). First-order upwinding is stable if the CFL 

condition is satisfied, i.e., 

0 < C 0 < 1 , (1.18) 
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where C0 = u0At/Ax is the Courant number. A first-order forward in time and first-

order backward in space (FTBS) discretization of Eq. (1.16) on a uniform Cartesian 

grid gives 

s«+i = ( l - C 0 ) S r + Co^- i - (1-19) 

By performing a Hirt analysis (Hirt 1968) and substituting the Taylor-series expan

sions to obtain s"+1 and siy_1 in terms of time and space derivatives at i and n, 

the modified partial differential equation of the discretization (1.19) is given by, to 

0{Ax2,At2), 
ds ds , d2s .„ „ . 

«+"«& = *»a?' (1"20) 

where the numerical diffusion coefficient is given by 

k^ = ^u0Ax{\ - Co) = \^CQ{\ - Co). (1.21) 

The truncation errors show that first-order upwinding is first-order accurate in space 

and time. First-order upwinding is highly diffusive with the presence of a diffusion 

term in the truncation errors, which acts to smooth gradients in the flow. The 

numerical diffusion coefficient gives positive diffusion under the same criteria as the 

stability constraint. 

Second-order schemes 

A second-order scheme based on that of Lax and Wendroff (1960) can be derived with 

the quantity se given by 

Se = ^(Si + Si+1) + - '0(1 - C0)(s i + 1 - Si) , (1.22) 

where ip is a limiter function satisfying 0 < ip < 2. The discretization of Eq. (1.16) 

on a Cartesian grid gives 

sl+l = s7- \cQ (*r+1 - *?_i) + \^Cl {s?+1 - 2*? + sU) • (1-23) 
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By performing a Hirt analysis (Hirt 1968), the modified partial differential equation 

of the discretization is given by, 0(Ax3, At3), 

ds ds d2s , d3s 
-Q-t+^x=^— + k^—, (1.24) 

where the numerical diffusion coefficient is given by 

k^ = \u0AxC^ - 1) = \^-C2
0(i) - 1), (1.25) 

and the numerical dispersion coefficient is given by 

fcxxx = - ^ 0 A x 2 ( l - C2) = -\^CQ(\ - CD . (1.26) 

When ip = 0, Eq. (1.23) reduces to the central-differencing scheme, which introduces 

negative diffusion and is unstable. By setting ip = 1, Eq. (1-23) reduces to the 

Lax-Wendroff scheme (Lax and Wendroff 1960). This introduces antidiffusion that 

exactly cancels the first-order diffusion and produces a second-order dispersion. For 

stability, the Courant number must satistfy 0 < Co < 1, which ensures negative 

dispersion. While more accurate, the Lax-Wendroff scheme produces oscillations due 

to the numerical dispersion. These oscillations can be eliminated by adjusting the 

amount of antidiffusion in a way that satisfies the Total Variation Diminishing (TVD) 

constraint (Harten 1983). In five-point one-dimensional TVD schemes, the leading 

error is diffusive but the coefficient is second-order in Ax. 

Total-variation diminishing 

The interpolated face value using the TVD scheme is written as the sum of a lower-

order first-order upwind term and a higher-order anti-diffusive term. Application of 

a limiter function to the anti-diffusion term removes excessive diffusion and prevents 

the generation of oscillations. The quantity at se is given by, assuming UQ > 0, 

sf = si + -(f)(l-Cf)(si+1-si), (1.27) 
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where 0 is the limiter function, and Cf is the Courant number at a cell face. The 

TVD scheme limits the magnitude of (f> such that the total variation does not increase 

in time (Roe 1984; Sweby 1984), 

TV(sn + 1) < TV(s n ) , (1.28) 

where 
N 

TV(s?) = I > i - * - i | - (1-29) 
i=l 

The TVD scheme ensures that the method is monotonicity preserving, which implies 

that no new extrema can be created within the domain. The maximum value of the 

advected quantity is non-increasing, and the minimum value is non-decreasing. The 

limiter function <j)(r) (Sweby 1984) is defined by 

0 First-order upwind, 

1 Lax-Wendroff, 

(p(r) = < max(0,min(2r, l),min(r, 2)) Superbee, (1.30) 

£ t l Van Leer, 
l+r ' 

min(r, 1) Minmod. 

The ratio of the upwind to the local gradient ri+1/2 is given by 

= ^ ^ i u > 0, (1.31) 
l+1'Z Si+i -Si 

r 
_ si+2 — si+l 

' ' l+l »! 
otherwise. (1-32) 

The specification of a limiter function 0 determines how diffusive or compressive a 

scheme is. The larger the value of (f> within the TVD region, the more compressive 

the scheme. Among the TVD schemes, the Superbee scheme is the most compressive, 

while Minmod is the most diffusive. 
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U n s t r u c t u r e d gr ids 

The first-order upwind scheme is simple and monotonic, which makes it easy to 

implement on unstructured grids. Fringer et al. (2006) used first-order upwinding 

for scalar transport in SUNTANS, where cell-centered quantities of the upwind cell 

are interpolated onto cell faces. First-order upwinding introduces excessive diffusion 

resulting in the smearing of gradients in the flow. This led to the development of 

TVD schemes which are capable of maintaining sharp fronts on unstructured grids. 

The implementation of TVD schemes on unstructured grids is complicated by the 

difficulty in implementing and enforcing a monotonicity criteria that relies on direc

tional next-neighbor information. This information is readily available for Cartesian 

grids, but missing on unstructured grids. A number of approaches have been in

troduced to circumvent this difficulty, including schemes developed by Barth (1993) 

with varying degrees of success. More recently, Casulli and Zanolli (2005) proposed 

a TVD scheme for scalar transport in free-surface flows, which is mass conservative 

and satisfies the max-min property. 

1.7 Dissertation roadmap 

This work employs the SUNTANS model (Fringer et al. 2006) to perform three-

dimensional hydrodynamic simulations of San Francisco Bay to improve our under

standing of transport and circulation in estuaries. In Chapter 2, the setup and im

plementation of the SUNTANS model as applied to San Francisco Bay is described. 

Details of the calibration are presented, and model performance is assessed via val

idation against observations of sea-surface heights, currents and salinity at several 

locations throughout the Bay. A TVD scalar transport scheme is implemented and 

the results are compared to those using first-order upwinding. In Chapter 3, a sen

sitivity study is performed to determine the effects of grid resolution, the turbulence 

model, and the scalar transport scheme on salinity simulations in North San Francisco 

Bay. In Chapter 4, an analytical method is presented to derive numerical diffusion 
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coefficients on unstructured grids. Difficulties in analytically deriving diffusion coef

ficients for more general flow and triangulation conditions led to the development of 

a domain-averaged formulation to compute numerical diffusion coefficients. In Chap

ter 5, the domain-averaged formulation is employed to assess the performance of the 

high- and low- order schemes in San Francisco Bay in order to investigate the effects 

of tidal dispersion and time scales on numerical diffusion. In Chapter 6, the numerical 

model is employed to assess the implications of sea-level rise and hydrologic changes 

on salinity intrusion and estuarine circulation in North San Francisco Bay. 
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Chapter 2 

San Francisco Bay numerical model 

2.1 Introduction 

In this chapter, we describe the setup and implementation of the SUNTANS model 

as applied to San Francisco Bay. Details of the calibration are presented, and model 

performance is assessed via validation against observations of sea-surface heights, 

currents, and salinity at several locations throughout the Bay. This chapter is a 

modified version of the published manuscript Chua and Fringer (2011). 

2.2 Governing equations and numerical method 

We employ the SUNTANS model (Fringer et al. 2006) to simulate the flow in San 

Francisco Bay. SUNTANS is a parallel nonhydrostatic coastal ocean solver that uses 

a finite-volume formulation to solve the hydrodynamics and scalar transport equa

tions. Although SUNTANS is a nonhydrostatic model, the present implementation 

is hydrostatic since the dynamics of interest are strongly hydrostatic. The governing 

26 
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equations are the three-dimensional, Reynolds-averaged primitive equations: 

du _ , . dh dr „ . „ . d ( du\ ,n „. 
w + V • (u„) - / „ = - , _ - „ _ + V „ • ( , „ V „ . ) + ^ ^ j , (2.1) 

- + V . <„„) + In = - „ _ - < , - + V „ • ( „ , V „ „ ) + Tf ( ^ j , (2.2) 

where the free-surface height is h, the velocity vector is u and u(x, y, z, t) and v(x, y, z, t) 

are the Cartesian velocity components in the x and y directions, and the vertical ve

locity w(x, y, z, t) in the vertical z direction is computed via continuity: 

V - u = 0. (2.3) 

The baroclinic head is given by 

1 fh 

r = — / pdz, (2.4) 
PoJz 

where po is the constant reference density and the total density is given by po+p- The 

Coriolis term is given by / = 2f2sin0, where <j> is the latitude and Q is the angular 

velocity of the earth. The horizontal and vertical eddy-viscosities are given by vH and 

i/y, respectively. The free-surface evolves according to the depth-averaged continuity 

equation: 
dh 

dt 
+IK/>)+l(/>)=°' M 

The density perturbation, p, is computed with a linear equation of state in terms of 

the salinity s using p = p0(l + f3(s — SQ)), where po and s$ are reference states and 

P = 7.5 x 10~4 psu - 1 is the coefficient of salt expansivity. The effects of temperature on 

the stratification are neglected. The transport equation for salinity neglects horizontal 

diffusion and is given by 

g + v-M^Q, <,«) 
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where ey is the vertical turbulent eddy diffusivity. These equations are solved using 

the methods described in Fringer et al. (2006), in which the free-surface height, verti

cal diffusion of momentum, and vertical scalar advection are advanced implicity with 

the theta-method, and all other terms are advanced with the second-order Adams-

Bashforth method. For advection of momentum, the Eulerian-Lagrangian method 

(ELM) is employed and is crucial for successful applications that incorporate wetting 

and drying (Wang et al. 2008). 

2.2.1 Bottom shear stress and turbulence closure 

The quadratic drag law is applied at the bottom boundary to compute the bottom 

stress with 

U = PoCdUin!, (2.7) 

where Ui is the horizontal velocity vector in the first grid cell above the bed and 

U\ = -y/Ui • Ui is its magnitude, and the drag coefficient Cd is computed from the 

bottom roughness parameter z$ with: 

c,= \UJzA 
\_K \Z0J 

Here, z\ is the location of U\ at a distance of one-half the bottom-most vertical grid 

spacing above the bed, and the roughness coefficient zQ is adjusted to calibrate the 

three-dimensional model. The surface elevations are relatively insensitive to the choice 

of ZQ, and z0 is chosen so that the predicted velocities show a good level of agreement. 

No further tuning of z0 is required for salinity calibrations. A spatially-varying ZQ is 

used, such that in the Bay, ZQ = 0.001 mm, and in shallow regions (with depths less 

than 1.0 m), z0 = 1 mm. No interpolation of z0 is done, as we found that smooth 

transition over depths did not significantly change our results. Areas of marshland in 

San Pablo Bay and Suisun Bay account for the larger values of ZQ = 1 mm, as intense 

vegetation in these shallow shoal regions can significantly increase the bottom drag 

(Nepf 1999). Similar values of z0 are used for the intertidal zone by Wang et al. (2008) 

and for depths less than 2.0 m in simulations of South Bay by Gross et al. (1999b). 

(2.8) 
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Estimates of ZQ by Cheng et al.' (1999) show substantial variability of between 10 mm 

and 0.01 mm. Our choice of z0 = 0.001 mm is smaller than values used by Gross 

et al. (1999b) in South Bay (z0 = 0.02 mm) and from field experiments (Cheng et al. 

1999), though it may be necessary to partially compensate for errors due to numerical 

diffusion when using ELM for advection of momentum (Wang et al. 2008). 

The horizontal turbulent mixing of momentum is determined with a constant 

eddy-viscosity, while it is ignored for advection of scalars. The Mellor-Yamada level 

2.5 (MY2.5) model (Mellor and Yamada 1982), with stability functions modified 

by Galperin et al. (1988) is used to compute the vertical eddy-viscosity and eddy-

diffusivity. Details of the implementation of the turbulence model in SUNTANS are 

described in Wang et al. (2011a). A comparison of turbulence closure schemes in the 

Snohomish River estuary shows that differences between the schemes are relatively 

minor (Wang et al. 2011a). 

2.2.2 Wet-dry treatment 

The wet-dry treatment is developed in SUNTANS by Wang et al. (2008) and is used to 

simulate the flooding and draining of marshlands in the Bay. The buffering layer with 

thickness hbuffer = 0.1 m is defined in which the drag coefficient is increased to Cd = 5 

in order to decelerate the flow when the water depth becomes very shallow. This is 

on the same order of magnitude as values used by Ip et al. (1998) (hbuffer = 0.25 m), 

while Wang et al. (2008) and Zheng and Liu (2003) used hbuffer = 0.05 m. Our choice 

of Cd = 5 for dry cells follows from values used by Wang et al. (2008). For cells with 

water depth greater than hbuffer, the drag coefficient is computed from Eq. 2.8. A 

minimum depth hdry is defined to ensure positive depth for numerical stability. Cells 

with depth less than hdry are considered dry and tagged inactive. Wang et al. (2008) 

noted that the choice of hdry is arbitrary, and we use h^y = 0.05 m. 

2.2.3 Numerical method for scalar transport 

A variety of scalar transport schemes for unstructured grids are available to inter

polate scalar concentrations defined at cell centers of staggered grids to their cell 
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faces (Darwish and Moukalled 2003; Casulli and Zanolli 2005). Typical implementa

tions of higher-order monotonicity-preserving schemes interpolate face values using a 

combination of first-order upwinding and a higher-order antidiffusive flux, the value 

of which is limited using a flux limiter to ensure monotonicity via the TVD (Total 

Variation Diminishing) constraint (Harten 1983). If the flux limiter is zero, then 

the scheme reverts to first-order upwinding, while other values of the limiter, which 

depend solely on the ratio of the upwind to the location scalar concentration gra

dient, depend on the particular limiter function which is devised to yield different 

properties. For example, in second-order accurate, five-point TVD schemes for the 

one-dimensional advection equation, the Superbee limiter (Roe 1984) is the largest 

possible value of the limiter that still retains monotonicity for one-dimensional ad

vection, while the Minmod limiter (Sweby 1984) is the smallest possible value that 

ensures TVD and second-order accuracy. The Superbee scheme typically compresses 

fronts (Fringer and Street 2005; Gross et al. 1999a), while limiters that are closer 

to the Minmod scheme tend to smooth fronts. When applied to multidimensions on 

Cartesian grids, operator splitting is required if the TVD properties are to be en

sured (Gross et al. 1999a), while on unstructured grids further limitations on the 

fluxes are required (Casulli and Zanolli 2005). 

We implemented the TVD formulation of Casulli and Zanolli (2005) in SUNTANS, 

which allows specification of any of the existing flux limiters. Rather than presenting 

a comparison of numerous advection schemes as was done by Gross et al. (1999a) for 

South Bay, our focus is on the quantitative differences between a low- and a high-

order scheme, and therefore we restrict comparison to two. schemes, namely one that 

uses first-order upwind and the second of which employs the Superbee limiter. In the 

presence of wetting and drying, if a face abuts a dry cell, then first-order upwinding is 

always employed. This has a negligible effect on the overall character of the advection. 

In this chapter we refer to the scheme that employs the Superbee limiter as the TVD 

scheme, and this scheme is employed for the calibration simulations. 
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2.3 Setup of San Francisco Bay simulation 

2.3.1 Computational domain 

The computational domain depicted in Fig. 2.1 spans between the Pacific Ocean 

and the western and central portions of the Sacramento-San Joaquin Delta, including 

Central Bay, San Pablo Bay, Suisun Bay and South Bay. The ocean boundary extends 

to approximately 40 km west of Golden Gate. The radius of the semi-circular ocean 

boundary is chosen to align the northern most open boundary with Point Reyes. The 

complex and interconnected network of tributaries in the Sacramento-San Joaquin 

Delta is represented by a "false delta" consisting of two rectangles (Gross et al. 2005). 

This allows specification of inflow conditions emerging from the Delta. The length 

and depth of the "false deltas" are sized to obtain the correct tidal behavior of the 

Delta as seen by the eastern boundary of the SUNTANS domain. 

The major watercourses included in the domain are the Petaluma and Napa rivers 

which drain into San Pablo Bay and the Suisun and Montezuma slough which feed 

into Suisun Bay (See Fig. 2.1). The smaller rivers, creeks and tributaries entering 

San Francisco Bay do not provide significant inflows and are not included in the 

simulations because they do not significantly affect the salinity results over the 1.5-

month simulation period presented in this chapter. 

2.3.2 Bathymetry 

The model uses bathymetric data obtained from the National Geophysical Data Cen

ter (NGDC) database. The bathymetry was derived from US National Ocean Service 

(NOS) soundings in San Francisco Bay and the coastal ocean. The bathymetric source 

uses raw depths that have not been gridded and the average resolution of the sound

ings in the Bay is 10 m. Based on the work by Gross et al. (2005), a constant depth 

of 20 m is assumed for the rectangular "false deltas". The vertical datum is defined 

as mean sea level (MSL). We find the resolution of the bathymetry is sufficient for 

this study as the bathymetric data set used to interpolate the depths to cell centers 

of the unstructured grid has higher resolution than the resolution of the grid. The 
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Figure 2.1: The San Francisco Bay model domain, bathymetry (in m) and locations of 
calibration. Legend: Surface elevations (black circles), currents (red circles), salinity 
(red squares), and vertical profile transect (black line), Petaluma River (PR), Napa 
River (NR), Suisun Slough (SS), Montezuma Slough (MS). 
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bathymetry of San Francisco Bay is shown in Fig. 2.1. 

2.3.3 Unstructured grid 

The unstructured grid for the domain (Fig. 2.2) was generated using SMS (Envi

ronmental Modeling Systems, Inc.). The average resolution of the grid, based on 

triangular cell lengths, is 50 m, and the grid resolution gradually become larger west 

of the Golden Gate. The gradual transition in grid cell lengths prevents numerical 

errors associated with abrupt transitions in grid size. SUNTANS uses an orthogonal 

unstructured mesh, and a metric of orthogonality for San Francisco Bay is shown in 

Fig. 2.3. Angle skewness is the maximum deviation from 60° among the three angles 

of a cell, such that the average angle skewness in the Bay is 8.5°. 

In the vertical, the grid has structured z-levels, with a maximum of 60 layers in the 

deepest portion of the domain. The minimum vertical resolution is in the top layer 

and is 0.29 m. The vertical resolution is refined in the upper layers with a stretching 

ratio of 10% moving downward to resolve the flow in shallow regions of the Bay and in 

the vicinity of the salt wedge at Carquinez Strait. Partial stepping is employed so that 

the bottom faces of the bottom-most cells coincide with the interpolated depth at the 

cell centers. The total number of cells in the horizontal is approximately 80,000 with 

more than 80% located in the Bay. The three-dimensional grid has approximately 

2.5 million grid cells. 

2.3.4 Initial and boundary conditions 

The simulation is initialized with a flat free surface and a quiescent velocity field. 

The ocean salinity is assumed to be 33.5 psu, which corresponds to typical values 

observed in the coastal ocean near San Francisco Bay (Dever and Lentz 1994). The 

salinity field in the Bay was initialized with US Geological Survey (USGS) synoptic 

observations collected on 11 January 2005. The dataset consists of vertical profiles 

of salinity at 1 m vertical resolution at 39 sampling locations along the longitudinal 

axis of San Francisco Bay. The salinity at the cell centers of the grid is obtained 

by interpolation using the three nearest-neighbors with an inverse-distance weighting 
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(a) Entire domain 

(b) Refinement at Golden Gate (c) Rectangular "false deltas" 

Figure 2.2: The unstructured grid of San Francisco Bay. Entire domain (a), 
ment at Golden Gate (b), and rectangular "false deltas" (c). 
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Figure 2.3: Metric of orthogonality for San Francisco Bay. Greyscale depicts the 
distribution of angle skewness, in degrees. 
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scheme. Because salinity observations are available in the main channel along the 

central axis of the Bay but not in the shoals, the initial conditions assume no lateral 

variation in salinity. By initializing salinity with the observed data, the spin-up time 

is reduced from approximately 30 days if the domain is initialized with ocean salinity 

to 15 days. 

Open boundaries are located at the Pacific Ocean and at the Sacramento-San 

Joaquin Delta. The model is tidally forced at all nodes along the Pacific Ocean 

boundary with the 8 major tidal constituents from observed water surface elevations 

at Point Reyes (a single point). Specification of amplification and phase lag is not 

required when using observations at Point Reyes to drive the open ocean boundary, 

unlike the tidal boundary condition employed by Gross et al. (2005). 

The Sacramento-San Joaquin Delta boundary is forced with freshwater inflow 

estimates from the DAYFLOW program (CDWR 1986). Daily-averaged flows at 

San Joaquin river past Jersey Point (QWEST) and Sacramento river past Rio Vista 

(QRIO) are used to force the open boundaries at the rectangular "false deltas". The 

DAYFLOW program estimates flow using a volume balance approach, and can contain 

substantial errors due to uncertain terms in the water balance. Flow monitoring data 

collected by Oltmann (1998) suggest that the actual daily-averaged flows might be 

very different from DAYFLOW estimates. The cross-sectionally averaged velocities 

are imposed by dividing the inflow fluxes by the cross-sectional area at the Delta 

boundaries. The cross-sectionally averaged velocity is given by 

ub = % , (2.9) 
Ab 

where Ab is the surface area of the boundary and Q is the freshwater flow rate es

timated from the DAYFLOW program. Ab is computed for each time step as the 

surface area changes with the tides. 

A 45-day simulation is run during the period 1 Jan 2005 to 14 February 2005. 

In the winter river inflow is relatively high, and hence the influence of coastal up-

welling/downwelling is negligible in our model. The surface elevations, currents and 

salinity from the 45-day run are compared to observations for the period in which field 
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data are available. A time step size of 10 s is employed and is dictated by stability 

of explicit horizontal advection of scalars, which requires, approximately: 

Ai < m i n ( — f̂ ) , (2.10) 

the minimum of which occurs where the Voronoi distance between adjacent cells is 

Ari = 20 m and the velocity is «, = 2 m s_1 , and this occurs at the Golden Gate. 

Using this time step, simulation of the 45-day period requires 388,800 time steps 

which consumes 108 h of wallclock time using 32 processors on the Peter A. McCuen 

Environmental Computing Center at Stanford University. The simulation therefore 

requires one wallclock second to compute 10 s of simulation time, and thus simulations 

run roughly ten times faster than real time. 

The horizontal eddy-diffusivity is ignored, while the background vertical eddy-

diffusivity is set to ev = 10~6 m2 s - 1 which is required to allow turbulence to grow due 

to production in the turbulence model. The Coriolis parameter is assumed constant 

and is given by / = 9.36 x 10~5 rad s_ 1 . We neglect winds in our simulations as 

they do not influence the predictions over the time scale of interest. Winds may be 

more important for longer time-scale predictions. The implementation of wet-dry 

treatment in SUNTANS allows for the flooding and draining of the intertidal zones. 

Fig. 2.4 depicts the exposed areas in North San Francisco Bay during a strong low 

tide around day 30.9, where areas along the boundary in San Pablo Bay become dry. 

2.4 Model calibration and validation 

2.4.1 Surface elevations 

Surface elevation calibration was performed via comparison to observations at NOAA 

stations throughout San Francisco Bay (Fig. 2.1). The predicted and observed surface 

elevations at four NOAA stations in the Bay (a) Fort Point (9414290), (b) Richmond 

(9414863), (c) Alameda (9414750), and (d) San Mateo Bridge (9414458) are shown 

in Fig. 2.5. The diurnal and semi-diurnal tidal ranges and spring-neap tidal cycle are 
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Figure 2 4 Intertidal mudflats in North San Francisco Bay are exposed during LLW 
(shown in black) Surface elevations (in m) on the wet areas are plotted for day 30 9 
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Table 2.1: Statistical evaluation of surface elevations 

Station 

Fort Point 
Richmond 
Alameda 
San Mateo 

RMS error 
(m) 

0.088 
0.098 
0.13 
0.11 

RMS error 
(%) 
3.3 
3.5 
4.6 
3.3 

Correlation coefficient 

0.99 
0.99 
0.98 
0.99 

well reproduced by the model at all stations. The predicted and observed surface ele

vation at Golden Gate show very good agreement, indicating that the ocean boundary 

condition is accurately specified. The surface elevation at Richmond, Alameda and 

San Mateo Bridge are also predicted reasonably well both in terms of tidal range 

and phase. Overall, the surface elevation calibrations demonstrate that the model is 

accurately propagating tides along the axis of the estuary. 

Similar metrics to those of Gross et al. (2009), including mean and RMS errors 

and the correlation coefficients, are used for model skill assessment. We compute 

mean and RMS errors of time series with N elements using: 

Mean error — T7 / ^(-^model ~ -^obs) ( 2 - H ) 

RMS error = ^ ^ ( X m o d e l - Xo b s)
2 (2.12) 

where X is the desired quantity to compare, i.e. free-surface, depth-averaged currents, 

or salinity. The correlation coefficient is computed with: 

_ Z-A^model ~ ATmodel) (^obs ~ -^obs) /^ •. „\ 

V ( /Ct(^model — ^mode l ) ) (XX^obs ~ -^obs)) 

where X is the quantity time-averaged over the calibration period. Statistical evalua

tion of the model performance for surface elevations is presented in Table 2.1. At the 

NOAA stations, the RMS errors are less than 5% of the tidal range and correlation 

coefficients exceed 0.98. 

Harmonic analysis of surface elevations is carried out at NOAA stations where 

harmonic constituent data are available. A comparison of observed and predicted 
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Figure 2.5: Comparison of predicted and observed surface elevations (in m) at (a) 
Fort Point (b) Richmond (c) Alameda and (d) San Mateo Bridge. Legend: predictions 
(•••), observations (—) 
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Table 2.2: M2 surface elevation constituents 

Station 

Central Bay 
Fort Point 
Richmond 
South Bay 
North Point 
Pier 22 1/2 
Alameda 
Hunters Point 
Oyster Point 
San Mateo 
N o r t h Bay 
Mare Island 
Port Chicago 

Amplitude (m) 
Observed Predicted 

0.580 
0.616 

0.607 
0.644 
0.678 
0.706 
0.753 
0.826 

0.597 
0.515 

0.586 
0.612 

0.624 
0.658 
0.709 
0.720 
0.762 
0.814 

0.659 
0.424 

Error 

-0.006 
0.004 

-0.017 
-0.014 
-0.031 
-0.014 
-0.009 
0.012 

-0.062 
0.091 

Observed 

210.6 
223.1 

213.3 
218.9 
224.0 
223.6 
235.5 
238.0 

260.6 
288.2 

Phase (°) 
Predicted 

211.0 
231.2 

221.1 
226.4 
229.5 
228.4 
230.0 
231.9 

254.6 
277.5 

Error 

-0.4 
-8.1 

-7.8 
-7.5 
-5.5 
-4.8 
5.5 
6.1 

6.0 
10.7 

amplitudes and phases for the M2 constituent is shown in Table 2.2. The amplitude 

and phase errors are within 9 cm and 11°, respectively for all stations. The observed 

and predicted Kl harmonics are shown in Table 2.3. The errors for amplitudes and 

phases are within 9 cm and 10°, respectively. The effect of errors of SI, 0 1 and 

N2 harmonics on the tidal hydrodynamics are negligible as their amplitudes on the 

order of 0.1, 0.2 and 0.1 m respectively, are relatively small when compared to the 

M2 and Kl harmonics which are on the order of 0.6 m and 0.3 m, respectively 

(Table 2.4 - 2.6). The spatial distributions of the amplitude and phases for the M2 

and Kl harmonics are plotted in Fig. 2.6, which shows that the errors in the predicted 

M2 and Kl amplitudes increase with distance from the Golden Gate. This occurs 

primarily because of the false delta which reflects too much of the barotropic tidal 

energy. Additionally, bathymetric variability upstream makes accurate specification 

of bottom roughness a difficult task, particularly where the shallow mudflats are 

extensive. 
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Figure 2.6: Distribution of amplitudes (in m) and phases (in degrees) for M2 and Kl 
harmonics plotted against distance from Golden Gate. Points in South Bay are neg
ative and those in North Bay are positive. Legend: predictions (—o—), observations 
( - X - ) . 
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Table 2.3: Kl surface elevation constituents 

Station 

Central B a y 
Fort Point 
Richmond 
South Bay 
North Point 
Pier 22 1/2 
Alameda 
Hunters Point 
Oyster Point 
San Mateo 
North Bay 
Mare Island 
Port Chicago 

Amplitude (m) 
Observed Predicted Error 

0.368 
0.374 

0.376 
0.381 
0.377 
0.394 
0.400 
0.401 

0.336 
0.287 

0.378 
0.360 

0.377 
0.381 
0.377 
0.385 
0.388 
0.396 

0.336 
0.196 

-0.010 
0.014 

-0.001 
0.000 
0.000 
0.009 
0.012 
0.005 

0.000 
0.091 

Observed 

226.5 
233.1 

226.8 
229.5 
232.7 
232.1 
238.3 
239.5 

253.7 
271.9 

Phase (°) 
Predicted 

230.2 
241.5 

236.2 
239.0 
241.8 
240.8 
242.0 
243.0 

255.2 
278.8 

Error 

-3.7 
-8.4 

-9.4 
-9.5 
-9.1 
-8.7 
-3.7 
-3.5 

-1.5 
-6.9 

Table 2.4: SI surface elevation constituents 

Station 

Central B a y 
Fort Point 
Richmond 
South Bay 
North Point 
Pier 22 1/2 
Alameda 
Hunters Point 
Oyster Point 
San Mateo 
North Bay 
Mare Island 
Port Chicago 

Amplitude (m) 
Observed Predicted Error 

0.137 
0.143 

0.141 
0.143 
0.154 
0.163 
0.166 
0.182 

0.129 
0.106 

0.087 
0.087 

0.088 
0.094 
0.104 
0.106 
0.114 
0.123 

0.092 
0.049 

0.050 
0.056 

0.053 
0.049 
0.050 
0.057 
0.052 
0.059 

0.037 
0.057 

Observed 

218.4 
233.6 

220.7 
227.2 
235.0 
236.5 
246.6 
253.3 

273.5 
302.4 

Phase (deg) 
Predicted 

214.9 
241.9 

233.3 
241.3 
245.1 
244.7 
247.1 
249.8 

272.0 
306.7 

Error 

3.5 
-8.3 

-12.6 
-14.1 
-10.1 
-8.2 
-0.5 
3.5 

1.5 
-4.3 
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Table 2.5: 0 1 surface elevation constituents 

Station 

Central Bay 
Fort Point 
Richmond 
South Bay 
North Point 
Pier 22 1/2 
Alameda 
Hunters Point 
Oyster Point 
San Mateo 
N o r t h Bay 
Mare Island 
Port Chicago 

Amplitude (m) 
Observed Predicted Error 

0.230 
0.228 

0.231 
0.231 
0.230 
0.234 
0.240 
0.241 

0.200 
0.164 

0.250 
0.231 

0.248 
0.250 
0.243 
0.250 
0.251 
0.256 

0.212 
0.117 

-0.020 
-0.003 

-0.017 
-0.019 
-0.013 
-0.016 
-0.011 
-0.015 

-0.012 
0.047 

Observed 

210.1 
216.9 

209.7 
212.8 
216.5 
214.8 
221.7 
223.9 

237.2 
256.4 

Phase (deg) 
Predicted 

213.3 
226.1 

219.7 
222.7 
226.7 
225.1 
226.7 
227.6 

240.4 
269.3 

Error 

-3.2 
-9.2 

-10.0 
-9.9 

-10.2 
-10.3 
-5.0 
-3.7 

-3.2 
-12.9 

Table 2.6: N2 surface elevation constituents 

Station Amplitude (m) 
Observed Predicted Error 

Phase (deg) 
Observed Predicted Error 

Central Bay 
Fort Point 
Richmond 
South Bay 
North Point 
Pier 22 1/2 
Alameda 
Hunters Point 
Oyster Point 
San Mateo 
N o r t h Bay 
Mare Island 
Port Chicago 

0.123 
0.130 

0.129 
0.133 
0.139 
0.147 
0.156 
0.166 

0.119 
0.098 

0.114 
0.115 

0.119 
0.125 
0.134 
0.136 
0.144 
0.153 

0.122 
0.076 

0.009 
0.015 

0.010 
0.008 
0.005 
0.011 
0.012 
0.013 

-0.003 
0.022 

184.9 
197.1 

187.0 
193.5 
199.3 
199.5 
213.4 
216.0 

233.8 
262.1 

187.6 
209.0 

199.9 
206.0 
209.5 
208.5 
210.4 
212.5 

233.4 
258.1 

-2.7 
-11.9 

-12.9 
-12.5 
-10.2 
-9.0 
3.0 
3.5 

0.4 
4.0 
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10 
Year day 2005 

Figure 2.7: Comparison of predicted and observed depth-averaged velocities (m s 1) 
at Richmond. Legend: predictions (•••), observations (—). 

2.4.2 Currents 

Acoustic doppler profiler (ADP) current data are obtained from NOAA/NOS at two 

stations in San Francisco Bay, namely: (a) Richmond and (b) Oakland. Current data 

is available at the ADP stations from 1 January 2005 (year day 1) - 30 January 2005 

(year day 30). The locations of the ADP stations are shown in Fig. 2.1. The raw ADP 

current data is filtered with a low-pass fifth-order Butterworth filter, with the cutoff 

frequency of seven cycles/day to remove the high-frequency non-tidal oscillations, 

following the approach of Sankaranarayanan and McCay (2003). The phase shift 

inherent to the Butterworth filter is eliminated by passing the current data forward 

and backward through the filter. The U and V directions are chosen as the east and 

north components of the velocities, respectively. A statistical evaluation of the model 

performance for the depth-averaged U and V velocities is presented in Table 2.7. The 

mean and RMS errors are computed with Eqs. 2.11 and 2.12 where X is either the 

depth-averaged U or V velocity. 

As shown in Figs. 2.7 and 2.8, the model reproduces the spring-neap variability and 

the mixed diurnal and semi-diurnal variability in the observed currents at Richmond. 

The depth-averaged velocities in Fig. 2.7 show the phases of the U and V velocities 
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Figure 2.8: Comparison of predicted and observed U and V velocity profiles (in m s 
at Richmond. 
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10 
Year day 2005 

Figure 2.9: Comparison of predicted and observed depth-averaged velocities (m s a) 
at Oakland. Legend: predictions (•••), observations (—). 

compare well, and overall a good level of agreement is obtained for the magnitudes. 

Peak U and V depth-averaged velocities are slightly underpredicted by the model. 

U and V velocity profiles in Fig. 2.8 compare well throughout the water column. 

U velocity profiles close to the bottom are slightly underpredicted during flood and 

ebb. We attribute these errors to two sources. First, the Richmond ADP is located 

close to the intertidal mudflats and hence the flow at Richmond is influenced by the 

wetting and drying process of the mudflats, which is subject to numerical errors as 

a result of strong gradients inherent in the observations that may not be resolved by 

the simulations. Second, the accuracy of predicting velocities in the bottom half of 

the water column is dependent on accurate representation of the bottom shear layer 

which is difficult to capture correctly in the presence of strong bathymetric variability. 

As shown in Figs. 2.9 and 2.10, at Oakland the model-predicted currents have sim

ilar spring-neap cycles and mixed diurnal and semi-diurnal patterns as the observed 

velocities. The phases and magnitudes of the U and V depth-averaged velocities show 

good overall agreement. The depth-averaged velocities in Fig. 2.9 show that the peak 

ebb U velocities are underpredicted by the model during spring tides, while peak 

flood U velocities are overpredicted by the model during neap tides. During spring 
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Figure 2.10: Comparison of predicted and observed U and V velocity profiles 
m s_1) at Oakland. 
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Table 2.7: Statistical evaluation of depth-averaged velocities 

Station 

Richmond 
U 
V 
Oakland 
U 
V 

Observed mean 
(m s"1) 

-0.0093 
0.057 

-0.030 
-0.074 

Predicted mean 
(m s-1) 

-0.0022 
-0.0044 

-0.0040 
0.017 

Mean error 
( m s " 1 ) 

0.0071 
0.061 

0.026 
0.096 

RMS error 
(m s"1) 

0.11 
0.16 

0.065 
0.17 

tides peak flood V velocities are overpredicted by the model, and peak ebb V veloc

ities are underpredicted by the model. V velocity profiles in Fig. 2.10 compare well 

throughout the water column, while U velocity profiles close to the surface during ebb 

are underpredicted by our model and U velocity profiles close to the bottom during 

flood are overpredicted by our model. The difficulty in obtaining good predictions at 

Oakland is due to the complex flow around Treasure Island and Yerba Buena Island 

which is highly variable, and may not be well-resolved by the resolution in our model. 

2.4.3 Salinity 

The salinity calibration is performed from 15 January 2005 (year day 15) to 15 Febru

ary 2005 (year day 45). We calibrated salinity for this period as it takes at least 15 

days to spin-up the three-dimensional salinity simulations. The salinity predictions 

are compared with observations from the US Geological Survey (USGS) at two lo

cations in San Francisco Bay, namely (a) Point San Pablo (PSP) and (b) Benicia 

(BEN) (shown in Fig. 2.1). The salinity observations consist of both near-surface and 

near-bottom salinity at both stations. The observed salinity data is filtered with a 

low-pass fifth-order ButterWorth filter to remove non-tidal oscillations, and forward 

and backward passed to eliminate the phase shift inherent in the filter. 

Time series of surface and bottom salinity, and bottom-top salinity difference at 

Point San Pablo are shown in Fig. 2.11. In general, there is good qualitative agreement 

between the predicted and observed salinities in terms of amplitude and phase. The 

predicted stratification compares well with observations, with the exception that our 
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model predicts lower maximum stratification (3 psu) from year day 48 to year day 50, 

as a consequence of overprediction of minimum surface salinity during this period. 

Time series of surface and bottom salinity, and bottom-top salinity difference 

at Benicia are shown in Fig. 2.12. The salinity predictions are generally in good 

agreement with the observations. The predicted onset and breakdown of stratification 

occurs roughly with the correct magnitude and phase relative to the observations. 

Periodically stratified conditions are present during spring tides, in which the water 

column is well-mixed during the strong tide and weakly stratified during the weak 

tide. The minimum stratification from our model is relatively insensitive to the spring-

neap variability. The errors may be due to inaccuracies in the inflow estimates from 

DAYFLOW, the effects of which are larger when the strength of the tidal currents is 

weak. Flow boundary conditions imposed at the Delta use daily-averaged flow values, 

and this averaging may also contribute to the errors. 

Statistical evaluation of the model performance for salinity is presented in Table 

2.8. The mean and RMS errors are computed with Eqs. 2.11 and 2.12. The mean er

rors at PSP at the surface and bottom sensors are 0.14 psu and 0.25 psu, respectively, 

while the RMS errors at the surface and bottom sensors are 1.4 psu and 1.2 psu, re

spectively. Our mean errors are lower than those of Gross et-al. (2009), in which the 

mean errors for the surface and bottom sensors are 1.0 psu and 0.8 psu, respectively 

(Gross et al. (2009) did not compute RMS errors for salinity). Mac Williams et al. 

(2007) compared bottom salinities at this station, and found mean and RMS errors 

of 1.22 psu and 1.70 psu, respectively. 

The mean errors at Benicia at the surface and bottom sensors are 0.08 psu and 0.36 

psu respectively, while the RMS errors at the surface and bottom sensors are 1.2 psu 

and 1.4 psu, respectively. At a nearby location (Martinez in Carquinez Strait) Gross 

et al. (2009) found mean errors for the surface and bottom sensors of 0.5 psu and 1.4 

psu, respectively (Gross did not compute RMS errors for salinity). Mac Williams et al. 

(2007) computed the mean and RMS errors at the bottom sensors to be 1.56 psu and 

2.21 psu, respectively. Overall, our model therefore has errors that are lower than 

the three-dimensional simulations of San Francisco Bay performed with TRIM (Gross 

et al. 2009) and UnTRIM (MacWilliams et al. 2007). 
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42 44 
Year day 2005 

Figure 2.11: Comparison of predicted and observed salinities (in psu) at Point San 
Pablo (a) surface elevations (b) surface salinity (c) bottom salinity (d) stratification. 
Surface and bottom salinities are 7.9 m and 0.9 m from the bottom, respectively. 
Legend: predictions (•••), observations (—). 
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38 40 
Year day 2005 

Figure 2.12: Comparison of predicted and observed salinities (in psu) at Benicia (a) 
surface elevations (b) surface salinity (c) bottom salinity (d) stratification. Surface 
and bottom salinities are 22.5 m and 7.6 m from the bottom, respectively. Legend: 
predictions (•••), observations (—). 
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Table 2.8: Statistical evaluation of salinity. 

Station Observed mean Predicted mean Mean error RMS error 
(psu) (psu) (psu) (psu) 

Point San Pablo (PSP) 
Surface 20.7 
Bottom 22.3 
Benicia Bridge (BEN) 
Surface 5.3 
Bottom 8.2 

2.5 Summary 

The unstructured-grid SUNTANS model applied to San Francisco Bay is employed 

to perform three-dimensional simulations of flow. Scalar transport is accomplished 

with a TVD formulation modified to work in the presence of wetting and drying. The 

model inputs include high resolution bathymetry from the NGDC database and an 

unstructured grid with an average resolution of (50 m. The model is forced at the 

open ocean boundary with water surface elevations and at the Delta boundary with 

freshwater inflows. The calibration is performed for a 45-day period with a time step 

size of 10 s, so that the simulations run roughly ten times faster than real time. 

The model is calibrated by adjusting the bottom roughness to reproduce sea-

surface heights, currents and salinity at locations throughout the Bay. Comparisons of 

predicted surface elevations and depth-averaged currents with observations match well 

at most locations in the Bay. The spring and' neap tidal cycles and the mixed semi

diurnal and diurnal tidal ranges for surface elevations and currents are reproduced 

by the model. However, large errors are observed in surface elevations predictions at 

the upstream locations at Mare Island and Port Chicago. These errors arise likely 

due to the false delta approximation which does not absorb enough barotropic tidal 

energy. As the focus of our work is on salinity simulations at the location of the salt 

wedge in Carquinez Strait, these errors have little effect on the results presented in 

this chapter and throughout this dissertation. 

Small errors in amplitudes and phases for the depth-averaged currents are observed 

at the Richmond and Oakland ADP, and comparisons of predicted velocity profiles 

20.9 0.14 1.4 
22.6 0.25 1.2 

5.4 0.08 1.2 
8.6 • 0.36 1.4 
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with observations do not match as well. The errors are likely attributed to inadequate 

resolution and to numerical diffusion when employing first-order interpolation in the 

ELM scheme. These errors could be reduced by employing quadratic interpolation 

(Wang et al. 2011b). The salinity predictions are in good qualitative agreement 

with observations in terms of amplitude and phase. The salinity predictions also 

capture the periodic stratification of the estuary, validating the inputs and choice of 

parameterizations. 
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Chapter 3 

Sensitivity analysis of salinity 

simulations 

3.1 Introduction 

In this chapter, we perform a sensitivity study to understand the effects of grid reso

lution, the turbulence model, and the scalar transport scheme on salinity simulations. 

Three levels of grid refinement are employed, and the results of a second-order accu

rate, TVD scalar transport scheme are compared to those with first-order upwinding. 

The relative contributions of numerical diffusion associated with the advection scheme 

and physical diffusion resulting from vertical eddy-diffusivity in the turbulence model 

on salinity intrusion and stratification are also presented. This chapter is also taken 

from Chua and Fringer (2011). 

3.2 Sensitivity to grid resolution 

To understand model sensitivity with respect to grid resolution, we perform simu

lations with three different levels of horizontal grid refinement. The coarse mesh 

has grid cell edge lengths of 200 m in the Bay, the medium mesh has grid cell edge 

lengths of 100 m in the Bay and the fine mesh has grid cell edge lengths of 50 m in 

the Bay. The fine mesh results correspond to those presented in Chapter 2. For all 

55 
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three meshes, the grid resolution gradually becomes larger west of the Golden Gate. 

The vertical structured z-level grid is not changed. Comparisons of salinity predic

tions with observations are made at Benicia with the three levels of grid resolution. 

We perform the simulations on each mesh with four different scenarios to evaluate 

the relative effects of the scalar transport scheme and the turbulence model. The 

scenarios are referred to as: (A) TVD with turbulence model (B) TVD without tur

bulence model (C) First-order upwind with turbulence model (D) First-order upwind 

without turbulence model. When the turbulence model is not employed, this implies 

that we ignore vertical eddy-diffusivity in the scalar transport equation by setting it 

to zero, although vertical eddy-viscosity is still retained in the momentum equations. 

All other parameters are the same as those presented in Chap. 2. 

The mean and RMS errors in the bottom salinity at Benicia and Point San Pablo 

are plotted as a function of grid refinement in Fig. 3.1. The most obvious source 

of error in the plots is the monotonic increase in errors moving from scenario A to 

D for a fixed grid resolution (A possessing the smallest error and D possessing the 

largest error). The largest increase in error occurs from implementation of first-order 

upwind for scalar advection, which is apparent in both the mean and RMS errors. 

The second greatest source of error results from implementation of the turbulence 

model. Lack of the turbulence model, and hence lack of vertical eddy-diffusivity, 

leads to a greater error for all levels of grid refinement. The impact of the turbulence 

model is relatively weak for all cases except for its impact on the mean salinity error 

when the TVD scheme is employed (runs A and B). Although the impact of not using 

the turbulence model on the mean salinity is large for these cases, the mean error in 

the bottom salinity is the same without the turbulence model on the fine grid as that 

with the turbulence model on the coarse grid. 

Fig. 3.1 shows that convergence with respect to grid refinement is achieved with 

the TVD advection scheme (runs A and B), but convergence is extremely weak for 

the first-order scheme (runs C and D). This is shown with the least squares fitted 

convergence rates tabulated in Table 3.1. For runs A and B, convergence is near 

1.5-order with respect to grid refinement for the mean error. However, convergence is 
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weaker for the RMS error. Although second-order convergence is expected for the one-

dimensional five-point TVD schemes (Roe 1984), errors arising from implementation 

on the unstructured grid reduce the rate of convergence to less than second order. 

The depth-averaged salinity at a particular location within the salt wedge can be 

approximated by assuming that it lies in a region of relatively constant horizontal 

salinity gradient T (Monismith et al. 2002), such that 

uT 
s(t) = S sin(wi), (3.1) 

to 

where S is the time- and depth-averaged salinity, and u is magnitude of the depth-

averaged tidal currents at frequency to . If we denote an observed value with subscript 

o and a modeled or predicted value with subscript p, then the error in the salinity 

can be approximated by 

A T̂  

As(t) = sp(t) - s0(t) = AS - sin(wi), 

where AS = Sp — S0 and AT = Tp — T0, and we have assumed that most of the error 

arises from differences in the modeled salinity field and not in the depth-averaged 

currents u. Denoting the time-average over a period 2-K/U) with an overbar gives the 

time-average of the error as 

As(t) = AS, 

and the RMS error as 

( ( A s - A s ) 2 ) = ( A s 2 - ( A s ) 2 ) 

1 uAF 

V2~ u 

This shows that the mean error indicates errors in the time- and depth-averaged 

salinity at a point, while the RMS error depends more strongly on errors in the 

horizontal salinity gradient, i.e., AT. 

Hence, the mean error is a measure of model ability to produce the correct salinity 

intrusion, and the RMS error is a measure of model ability to reproduce horizontal 
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Table 3.1: Least squares fitted convergence rates for runs A - D 

Runs 

A 
B 
C 
D 

Benicia 
Mean RMS 

1.3 0.38 
0.90 0.31 
0.13 0.076 
0.037 0.033 

Point San Pablo 
Mean RMS 

1.4 0.45 
1.0 0.38 

0.16 0.076 
0.043 0.065 

salinity gradients. This implies that model ability to predict salinity values converges 

-at near 1.5-order, while model ability to predict salinity gradients converges with less 

than first order. Since both Benicia and Point San Pablo lie within the salt wedge, the 

errors at the two locations behave similarly. However, convergence rates at Point San 

Pablo are slightly higher, and this may be due to smoother bathymetry and weaker 

currents there. 

Despite an expected first-order convergence rate, Fig. 3.1 shows that use of the 

first-order upwinding scheme (runs C and D) exhibits lack of convergence for the grid 

resolutions employed. The relative impact of the turbulence model on the errors is 

also negligible when first-order upwinding is employed. We hypothesize that lack of 

convergence occurs because excessive numerical diffusion due to first-order upwinding 

eliminates the feedback mechanism between vertical turbulent mixing and stratifica

tion. This is exhibited by the ineffectiveness of the turbulence model in reducing 

the errors for first-order upwinding in Fig. 3.1. On the other hand, when the TVD 

scheme is employed, the nonlinear feedback causes a reduction in errors by roughly 

one order of magnitude (the difference between run A and run B). 

As shown in Fig. 3.2, the impact of first-order upwinding is not only to reduce 

the horizontal salinity gradient, but also to reduce the vertical stratification. The 

reduction of the stratification occurs because the reduced horizontal salinity gradient 

reduces the gravitational circulation which acts to decrease the stratification. Moni-

smith et al. (2002) and Geyer and Chant (2006) show that, to leading order, friction 

balances the baroclinic pressure gradient caused by the longitudinal salinity gradi

ent, from which they demonstrate that the magnitude of the estuarine circulation 
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depends on the horizontal salinity gradient. As shown by the depth-averaged longi

tudinal salinity profiles in Fig. 3.3, the stronger vertical stratification resulting from 

the TVD scheme leads to nonlinear feedback between vertical mixing and stratifica

tion. The nonlinear feedback reduces the vertical mixing, which leads to more salinity 

intrusion for run A over run C. Figure 3.4 depicts the vertical eddy-diffusivity over 

time at Benicia and shows that indeed the vertical eddy-diffusivity is substantially 

lower when the TVD scheme is employed. 

Overlaid on the results in Fig. 3.1 are the errors computed by Mac Williams et al. 

(2007) and Gross et al. (2009). Mac Williams et al. (2007) employed the UnTRIM 

model using an unstructured grid with a nominal resolution of 400 m in the Bay, 

while Gross et al. (2009) used the Cartesian-grid TRIM model with a fixed horizontal 

resolution of 200 m. Although those simulations were calibrated over much longer 

periods than the present simulations, it is still useful to compare their results to ours 

in the context of understanding the impact of grid resolution. UnTRIM and TRIM 

employ the same TVD scheme as in SUNTANS (which is based on the method of 

Casulli and Zanolli (2005)). While the turbulence models are different, the relative 

impact of different two-equation turbulence models on the salinity predictions is very 

small (Wang et al. 2011a). All three codes employ the same first-order Eulerian-

Lagrangian method for momentum advection. Because the implementations are very 

similar to one another, differences in predictions can be attributed solely to grid 

resolution. This is clearly demonstrated in Fig. 3.1. Both the mean and RMS errors 

computed by Mac Williams et al. (2007) at Benicia and Point San Pablo are on the 

same asymptotic trajectories as those inferred from the results of run A. The mean 

error of Gross et al. (2009) is slightly higher than the results for run A at the same 

grid resolution. It is difficult to determine the source of the small difference of 1.0 psu 

at Benicia and 0.5 psu at Point San Pablo between our model and that of Gross 

et al. (2009), particularly since the result of Gross was calibrated over a one-year 

period. Nevertheless, these results suggest that the differences between the results 

are mainly due to grid resolution and not to the details of the implementation or 

numerical methods. 
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Figure 3.1: Convergence of the mean (a) and RMS (b) bottom salinity errors (in psu) 
as a function of grid refinement Ax (km) at Benicia and Point San Pablo. Legend: 
Run A (o), Run B (A), Run C (•) , Run D (o), result of Gross et al. (2009) (*), 
result of Mac Williams et al. (2007) (+). 



www.manaraa.com

CHAPTER 3. SENSITIVITY ANALYSIS OF SALINITY SIMULATIONS 61 
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Figure 3.2: Vertical profiles of salinity (in psu) along the transect depicted in Fig. 2.1 
in Carquinez Strait tidally-averaged on year day 44 on the finest mesh. Runs: (A) 
TVD with turbulence model (B) TVD without turbulence model (C) First-order 
upwind with turbulence model (D) First-order upwind without turbulence model. 
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Figure 3.3: Depth-averaged salinities (in psu) from the Golden Gate along the longi
tudinal axis in North San Francisco Bay. Legend: (A) TVD with turbulence model 
(—), (B) TVD without turbulence model (—.—), (C) First-order upwind with turbu
lence model ( ), (D) First-order upwind without turbulence model (•••). Results 
are computed for the finest mesh. 
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Run A: TVD with turbulence model 

Run C: First-order upwind with turbulence model 

38 40 
Year day 2005 

-14 -4 

Figure 3.4: Time series of vertical profiles of the vertical eddy-diffusivity (in 
log(m2s-1)) at Benicia on the finest mesh. 
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3.3 Salt flux analysis 

In this section we quantify the effects of the grid resolution, advection scheme and 

the turbulence model on the salt flux. We compare tidally-averaged steady state salt 

fluxes at a cross-section in Carquinez Strait (at the location of Benicia in Fig. 2.1) for 

Runs A - D on the fine and coarse meshes. The salt flux simulations are performed 

with simplified forcing that employ idealized tides. To ensure periodicity, only two 

constituents are employed, namely the M2 component and an idealized Kl component 

which has a period that is exactly double that of M2. Simulations are run over 50 

Kl cycles until the tidally-averaged salt flux is roughly in steady state. We assume 

steady state is reached when the difference between the seaward advection of salt is 

balanced by landward dispersion by less than 5% (i.e. (advective flux - dispersive 

flux)/(advective flux)< 5%). 

Following Fischer et al. (1979), if < • > represents the tidal average and T repre

sents the cross-sectional integral, then the velocity normal to a cross section, u, and 

the salinity at the cross section, s, can be decomposed with 

u = ua + uc + us, 

S — Sa T S c T 5 S , 

where the tidally-averaged and area-integrated velocity is ua = < u > and the tidally-

averaged and area-integrated salinity is sa =< s >. The cross-sectionally varying, 

tidally-averaged terms are 

us = (u) - ua , 

and the cross-sectionally varying, tidally-varying terms are 

uc = u-ua, 

oc S Sa . 
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The tidally-averaged salt flux through a cross-section can then be written as 

F = ( (ua + us + uc)(sa + ss + sc) dA) = uasaA0 + / usss dA0 + ( / ucscdA \ 

FE FT 

(3.2) 

where FR is the river flux, FE is the steady exchange flux, FT is the tidal flux, and 

A0 = A is the tidally-averaged cross-sectional area. The river flux represents mean 

seaward advection, while the steady exchange and tidal terms account for dispersive 

mechanisms. These fluxes for Runs A to D on the fine and coarse meshes are shown 

in Fig. 3.5. The figure also shows u = FT/(FE + FT), which represents the ratio of 

tidal to total dispersive flux (Hansen and Rattray 1965), and 1 — v = FE/(FE + FT), 

which represents the ratio of steady exchange flux to the total dispersive flux. 

Fig. 3.5 shows that the relative effect of the grid resolution on the salt fluxes 

is weak when first-order upwinding is used (runs C and D). For these runs strong 

numerical diffusion reduces the horizontal salinity gradients, which results in weaker 

baroclinic circulation and smaller stratification. This is seen in observations by Geyer 

(2010) in the Hudson River estuary and Monismith et al. (2002) in San Francisco 

Bay where the strong horizontal salinity gradient induces a baroclinic pressure gra

dient, which drives estuarine circulation and suppresses vertical mixing to increase 

stratification. We observe that the steady exchange flux, FE is smaller than the tidal 

flux, FT with first-order upwinding. When the TVD scheme is used, the resulting 

compressed horizontal salinity gradients lead to exchange fluxes that are larger than 

the tidal fluxes regardless of whether or not the turbulence model is used. Lack of the 

turbulence model decreases the exchange flux for runs A and B on both the fine and 

coarse meshes. The absence of vertical mixing leads to stronger estuarine circulation, 

and this weakens the longitudinal salinity gradient. The result is a reduced estuarine 

circulation and decreased exchange flux. This is described in Park and Kuo (1996) 

who show the effect of variation in vertical mixing on estuarine circulation over short 

and long time scales in a numerical model application to Chesapeake Bay. While 

lack of vertical mixing produces stronger estuarine circulation, lack of the turbulence 

model on the fine grid significantly increases the tidal flux {y increases by a factor 
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of four). On the coarse grid, lack of the turbulence model for run B has very little 

effect on the tidal flux but instead leads to a river flux that is smaller roughly by 

an amount equal to the decrease in steady exchange flux. Therefore, the value of u 

remains relatively unchanged on the coarse grid for runs A and B. 

3.4 Summary 

A sensitivity study is performed to understand the effects of grid resolution, the tur

bulence model, and the scalar transport scheme on salinity simulations in North San 

Francisco Bay. The best convergence rate in space is achieved when the TVD scheme 

is employed for salt transport and the turbulence model is employed. This accuracy 

degrades without the turbulence model due to a lack of feedback between vertical 

turbulent mixing and stratification. An expected first-order rate of convergence with 

respect to grid refinement is not achieved with first-order upwinding. Significant hor

izontal numerical diffusion associated with first-order upwinding leads to a diffuse 

salt wedge and decreased baroclinic circulation, resulting in negligible influence of 

the turbulence model and grid refinement. 

The effects of grid resolution, the turbulence model and the scalar transport 

scheme on salt flux are investigated. Employing first-order upwinding, the salt fluxes 

are relatively insensitive to the turbulence model and the grid resolution. When the 

TVD scheme is used, the salt fluxes are larger on the fine mesh compared to the 

coarse mesh, as the fine mesh provides better resolution of the compressed salinity 

front. Lack of the turbulence model decreases the exchange flux on both fine and 

coarse meshes due to the absence of feedback between vertical mixing and stratifica

tion. 
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Figure 3.5: Influence of the scalar advection scheme and turbulence model on tidally-
averaged salt fluxes (in psu m3/s) on fine (a) and coarse (b) meshes. Runs: (A) 
TVD with turbulence model, (B) TVD without turbulence model, (C) First-order 
upwind with turbulence model, (D) First-order upwind without turbulence model. 
Legend: Black: FR, Gray: FE, White: FT. Diffusive fraction v = FT/(FT + FE) and 
1 - u = FE/(FT + FE). 
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Chapter 4 

Numerical scalar diffusion on 

unstructured grids 

4.1 Introduction 

In this chapter, we propose an approach to analytically derive numerical diffusion co

efficients for finite-volume methods on unstructured grids by extending the Hirt anal

ysis on Cartesian grids to unstructured grids. Two forms of computing the modified 

equation, termed the independent analysis and the combined analysis are presented. 

The numerical diffusion coefficients are analytically derived for first-order upwinding 

and a second-order scheme which stabilizes central differencing but introduces dis

persion. A stability analysis is performed for the high- and low-order schemes, and 

an accuracy analysis determines the accuracy in time and space. 

4.2 Quantification of numerical diffusion 

4.2.1 Numerical diffusion on Cartesian grids 

If the one-dimensional advection equation with constant velocity UQ is given by 

9s ds /A^. 

68 
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then a first-order forward in time and first-order backward in space (FTBS) discretiza

tion on a uniform Cartesian grid gives 

s? + 1 = (1 - Co) s? + Cost,, (4.2) 

where Co = UoAt/Ax is the Courant number, which must satisfy 0 < Co < 1 for 

stability. By performing a Hirt analysis (Hirt 1968) and substituting the Taylor-

series expansions to obtain s™+1 and s"_j in terms of time and space derivatives at 

i and n, the modified partial differential equation of the discretization (4.2) is given 

by, to Q{Ax2, At2), 
ds ds , ijd2s ,, „ . 

where the numerical diffusion coefficient is given by 

1 1 A T 2 

A£ = -u0Ax (1 - Co) = - — C o (1 - Co) . (4.4) 

Eq. (4.3) shows that the FTBS discretization of the one-dimensional advection equa

tion (4.1) gives the solution of the modified equation (4.3), which contains numerical 

diffusion that is proportional to Ax. The numerical diffusion coefficient gives positive 

diffusion under the same criteria as the stability constraint. 

The two-dimensional advection equation with constant velocity UQ is given by 

ds ds ds , A . 

M+U3-*+V9-X=°- ( 4 ' 5 ) 

where u = Uo cos 8 is the velocity in the x direction and v = UQ sin 8 is the velocity 

in the y direction. A first-order forward in time and first-order backward in space 

(FTBS) discretization on a uniform two-dimensional Cartesian grid gives 

aft1 = {1-CX- Cy)slj + CxsUj + Cy<,--i , (4-6) 

where Cx = Co cos 8 and Cy = Co sin 9 are Courant numbers on the x and y faces, re

spectively. By performing a Hirt analysis (Hirt 1968), the modified partial differential 
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equation of the discretization (4.6) is given by, to 0(Ax 2 , At2), 

ds ds ds _ ,2dd
2s ,2d^2s

 h2d ^2s 

~di + udx' + vdy~~ ^dx^ + yw + k*y~dx~dy' 

where the numerical diffusion coefficients are given by 

^ = ^ o A z ( l - Co cos 8) cos 8 , 

A^ = ^ o A y ( l - C o s i n 0 ) s i n 0 , 

k2d =-\uoAxCQsm29. y 2 

(4.7) 

(4.8) 

The FTBS discretization of the two-dimensional advection equation (4.5) leads to 

the modified equation (4.7) which has numerical diffusion that is proportional to the 

grid spacing. When 9 = 0 the numerical diffusion coefficients are the same as the 

one-dimensional Cartesian grid, and stability is governed by 0 < Co < 1. 

A stability analysis is performed to derive the general constraint for arbitrary 8. 

The numerical diffusion coefficients are written as a diffusion tensor of the form 

Kn = 
k -k 
a x x 2 x y 

It- k 
2 "'w ^yy 

(4.9) 

where the factor of 1/2 is required to satisfy the identity 

^-(Ki — 
dxi \ J dxj 

d2s d2s d2s 

oxz dxdy 
vro dy2 

where the Einstein summation convention is assumed and i,j=l,2. The stability 

properties are determined by diagonalizing the diffusion tensor Kp to obtain 

D = M~lKDM, (4.10) 

where D is the diagonal matrix constructed from the corresponding eigenvalues and M 

is a matrix composed of the eigenvectors of Kp. Diagonalizing a matrix is equivalent 

to transforming the diffusion tensor into a special set of coordinate axes such that the 
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Figure 4.1: Stability region for first-order upwinding based on the sign of the principle 
components of the diffusion tensor d2d and d2

d. When d2d > 0 and d\\d > 0 the scheme 
is stable. The black line shows the contour of d2d = 0 while d\d > 0 for 0 < C0 < 1 
and 0 < 9 < TT/2. 

diagonal matrix still shares the fundamental properties of the diffusion tensor. The 

diagonal matrix D has the form 

D = 
dx 0 

0 d2 

(4.11) 

Stability is achieved when the principal diagonal components of D are non-negative, 

such that (ii > 0 and d2 > 0 (Leveque 2011). 

Fig. 4.1 shows the contours of the diffusion tensor d2d = 0 and (i2d = 0 with respect 

to Co and 9 for first-order upwinding in the interval 8 = [0, TT/2]. d2d is always positive, 

and thus the Courant number restriction is dependent on (Bf1. The least restrictive 

Courant number occurs when 8 = 0 and 7r/2 which requires that 0 < Co < 1, and the 

most restrictive Courant number occurs when the flow is offset by angle 7t/4 relative 

to the grid which requires that 0 < Co < l / \ /2- This satisfies the Courant number 

restriction Cx + Cy < 1 (Fletcher 1997). 

Second-order schemes 

The first-order upwind scheme introduces first-order numerical diffusion, which tends 

to excessively smooth scalar gradients. An alternative is to employ forward-in-time 
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and centered-in-space differencing (FTCS) which leads to unconditional instability 

due to the introduction of negative diffusion. A well-known method that combats 

this negative diffusion is the Lax-Wendroff scheme (Lax and Wendroff 1960) that 

introduces enough positive diffusion to cancel the negative diffusion arising from cen

tral differencing. This gives rise to numerical dispersion as the leading term in the 

truncation error. The second-order discretization of Eq. (4.1) can be written as 

s?+1 = s? - \Co (s?+1 - st,) + \^C2 (s?+1 - 2s- + aU) , (4-12) 

where ip is a constant. When I/J = 0, Eq. (4.12) reduces to FTCS, while when ip = 1 

it becomes the Lax-Wendroff scheme. By performing a Hirt analysis (Hirt 1968), 

the modified partial differential equation of the discretization (4.12) is given by, to 

0(A.x3, At3), 
9s ds ,Tdd2s ? 1 J d3s lt _„. 

where the numerical diffusion coefficient is given by 

* £ = \uoAxCo(^ - 1) = ^ C g ( V - 1), (4.14) 

and the numerical dispersion coefficient is given by 

k]L = - ^ o A x 2 ( l - CD = - ~ C 0 ( 1 - C2
0). (4.15) 

This shows how, when ip = 0, the resulting FTCS discretization is unstable due to the 

introduction of negative diffusion. By setting ip = 1, Eq. (4.12) reduces to the Lax-

Wendroff scheme (Lax and Wendroff 1960) which produces k^ = 0 and k^ ^ 0. In 

this case stability is governed by the requirement of negative dispersion or 0 < Co < 1, 

which can be interpreted as requiring that dispersion must produce waves that are 

slower than uo- While more accurate, the Lax-Wendroff scheme produces oscillations 

due to the numerical dispersion. These oscillations can be eliminated by adjusting 

the amount of anti-diffusion in a way that satisfies the Total Variation Diminishing 

(TVD) constraint (Harten 1983). TVD schemes employ a nonconstant t/j, which 
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makes a Hirt analysis difficult. Therefore, the modified equation is derived using a 

constant ip. 

The second-order discretization of the two-dimensional advection equation (4.5) 

is given by 

1 ~ ' ^ 1 , , 
UV \Si,j+l ~ si,j-l) 

(4.16) 

Si,3 ~ SiJ o V5»+l,j Si-ij) Cy (Sjj+1 si,j-l) 

In theory the extension of one-dimensional methods to multi-dimensions is unstable 

(Lax and Wendroff 1964), however, many ocean models employ single-step advection 

schemes with higher-order interpolation on cell faces (Casulli and Zanolli 2005; Gross 

et al. 1999a). We find that a larger value of ip can be chosen to obtain positive 

numerical diffusion, which is required to obtain stability. 

By performing a Hirt analysis (Hirt 1968), the modified partial differential equa

tion of the discretization (4.16) is given by, to 0(Ax 3 , At3), 

^£ + v?i , v^l = k2d^l , J,2d^l k2d-^- + k2d — + k2d — 

dt dx dy ™dx2 yydy2 .xydxdy ™*dx3 yyydy3 

+ k2±J^ + k2d ^ 
(4.17) 

™ydx2dy *yydy2dx ' 

where the numerical diffusion coefficients are given by 

k2^ = ^u2
0At(^-l)cos28., 

k2d
y = \alAt^ - 1) sin2 8 , (4.18) 

kld = -^u2
0Atsm28. 
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The numerical dispersion coefficients are given by 

k2^ = -^u0Ax2 (1 - Cl cos2 8) cos 9 , 

k2d
y = - -UoAy 2 (1 - C2 sin2 9) sin 9 , 

1 (4-19) 
k™y = -u3

0At2sm28cos9, 

k2d = -u3
tAt2sm29sm8. 

When ip = 0, Eq. 4.16 reduces to FTCS, which is unstable since the numerical 

diffusion is negative. When ip = 1 it becomes the Lax-Wendroff scheme, which 

eliminates numerical diffusion with k2d = k2d = k2d = 0 for the case that 8 = 

0. Similar to first-order upwinding on two-dimensional Cartesian grids, a stability 

analysis is performed by diagonalizing the diffusion tensor. The Lax-Wendroff scheme 

is unstable since d\d > 0 and d2d < 0 except when 8 = 0 and 7r/2. By setting ip = 2, 

the second-order scheme can be stabilized. Similar to the second-order scheme on 

one-dimensional Cartesian grids, stability is governed by the requirement of negative 

dispersion which results in the Courant number restriction 0 < Co < l \ /2 , and this 

is identical to the constraint for first-order upwinding on two-dimensional Cartesian 

grids. 

4.2.2 Numerical diffusion on unstructured grids 

As with the form of the discrete scalar advection equation on Cartesian grids, the 

fundamental problem of scalar advection on unstructured grids is interpolation of the 

triangle-centered values Sj onto the faces. For higher-order schemes, the difficulty 

in determining the directional next-neighbor information to ensure that the scheme 

is monotonocity preserving translates into increased difficulties in implementation 

(Darwish and Moukalled 2003). A number of methods are available that are based 

on the one-dimensional methods, and these are discussed by Darwish and Moukalled 

(2003) and Casulli and Zanolli (2005). The numerical diffusion associated with scalar 

advection on unstructured grids is determined by extending the Hirt analysis (Hirt 
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1968) on Cartesian grids to unstructured grids. 

If we consider the multi-dimensional advection equation with a constant velocity 

Uo of the form 
ds 
— + u0 • Vs = 0 , (4.20) 

then its finite-volume form on a two-dimensional equilateral triangle in the x-y plane 

lj = Al and area a = ^ (shown in Fig. 4.2) with side lengths Alj = Al and area a = ^Al2 is given by 

^ = sr,_ A ^ Z [ [ / a ( s / ) „ + [J^Sf)n + ^ ( s / ) „ ] > ( 4 2 1 ) 

where Uj is the component of the velocity in the direction of the outward normal 

in triangle i on face j , and (sj)j is the scalar concentration on face j . Using this 

notation, the finite-volume form of the continuity equation is given by 

Ua + Up + Uy = 0, (4.22) 

which ensures consistency with continuity (Gross et al. 2002). In what follows we 

restrict our attention to the one-dimensional advection equation and assume Uo = 

Uoex. This does not present a loss of generality because the unstructured grid problem 

is sensitive to the angle between the triangle edges and the flow direction. Therefore, 

we assume the flow direction is parallel to the x-axis and rotate the grid rather than 

the velocity field. 

The magnitudes of the velocities on the faces of triangle i in Fig. 4.2 are given by 

\Ua\=u0sin9, (4.23) 

\Uf9\=u0sm(e + ^j , (4.24) 

\Uy\=uosm[9 + ?P\ . (4.25) 

We consider 9 in the interval [0,7r/3], since outside this range the signs of the face 

velocities will switch and the upwind cell for some of the faces will change. To 

obtain the numerical diffusion coefficients outside this range, we can add or subtract 
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u0= u0 ex 

Figure 4.2: Depiction of two-dimensional equilateral triangles. (sf)j is the scalar 
concentration on face j , Alj is the length of face j , Si is the scalar concentration of 
cell i. Three types of edges are denoted by a, P and 7. The velocity field is aligned 
with the x-axis and we assume 9 is defined as the angle that edge a makes with the 
flow direction. 

multiples of 7r/3 until 9 falls within the [0,7r/3] interval. 

Following this convention, there are two types of triangles in our analysis as shown 

in Fig. 4.3 depending on the orientation of edge a with respect to the x-axis or the 

velocity vector. The outward normal velocity components are positive on two edges 

and negative on one edge for type A cells (i.e., Ua = \Ua\, Up = —\Up\ and C/7 = \Uy\), 

while there is only one edge in type B cells with a positive outward component (i.e., 

Ua = — jC/c*I, Up = \Up\ and (77 = — \Uy\). For a grid composed of equilateral triangles, 

type A cells become type B cells and type B cells become type A cells if the grid is 

rotated by an amount (2m + l)7r/3 (m = 0,1, 2 , . . . ) . As shown in Fig. 4.4, type A 

cells are surrounded by type B cells, while type B cells are surrounded by type A 

cells. 

First-order upwinding 

The simplest method to interpolate scalar values defined at the triangle centers to 

the faces is first-order upwinding, for which 

, . ( Si Uj>0, , 
(sf)j = < J (4.26) 

[ Sj otherwise. 
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u B < o 

U„<0 

U„>0 

U a > 0 

(a) Type A 

e 
u0= u0 ex 

* U v < 0 

0 

u0= Uo ex 

U p > 0 

(b) Type B 

Figure 4.3: Two types of cells on unstructured grids. For type A cells, the velocity 
components are given by Ua = \Ua\, Up = — \Up\ and (77 = |c77|. For type B cells, the 
velocity components are given by Ua = — \Ua\, Up = \Up\ and C/7 - \U-r\-

u0= u0 ex 

Figure 4.4: Unstructured grid composed of equilateral triangles, showing how type A 
cells are surrounded by type B cells and vice-versa. 

file:///U-r/
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Here, Sj is the scalar value in the triangle adjacent to face j , and a lack of superscript 

implies time step n. The cells considered in the derivation of first-order upwinding 

are shown in Fig. 4.4. Following Holleman et al. (2011), we adopt the notation that 

the scalar in type A cell i is denoted by Ai and the scalar in type B cell i is denoted 

by Bi. In this chapter we derive two forms of computing the modified equivalent form 

of the advection equation (4.20), termed the independent analysis and the combined 

analysis. The independent analysis separately derives the modified equations for each 

of the cell types A and B, while the combined analysis employs a recurrence relation 

to derive one equation. 

Independent analysis for first-order upwinding 

If we consider a type A cell, the discretization given by Eq. (4.21) for cell A3 in 

Fig. 4.4 at time step n + 1 is given by 

AT1 = A\l-^^[-\Up\B^ + \Ua\Al + \UMl\ 

= (l-C0)A% + CpBt (4.27) 

where the Courant number on face j is defined as Cj = \Uj\AtAl/a. The Taylor-series 

expansion about time level n + 1 to obtain A3
+1 is given by 

r) An 1 Ft"1 An 1 f)3 An 

^ + 1 = An
3 + A t ^ + ^ A r 2 ^ + l & t 3 ^ + 0(A*4). (4.28) 

The Taylor-series expansion about A3 to obtain Bi is given by 

R - A -L. XBA^M ,BAdA3 1 ( BA,2 d2A3 1 , BA, 2 d2A3 
Bi-A3 + 6xl -g^ + Syi ^ + 2 ^ ) ^ + 2 ^ ) ~W 

+ A^rBA^J 4 ! 1 (,BA\ 3 # % 1 , BA.3 9 ^ 3 
xi yi dxdy 6 Kxi ' dx3 6 K yi ' dy3 

BA^xBAd3A3 , sBAfsBM2 d3A3 (4-29) 

+o(t( 4 Wnc) 
dx2dy Xl v Vl ' dy2dx 
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where Sxi
A and 6yA are the x- and y-components, respectively, of the vector pointing 

from the center of cell B to cell A3 (see Appendix for details). Differentiation of 

Eq. (4.29) in time gives 

dtk 
dt 

d2Bj 

dt2 

= -u0 

dA3+sBAd2A 

= un 

dx Xl dx2 

3 , ^ / r B A \ 

+ o((^)2) 
d2A 
~dx^ + U ^ > + o(si 

(4.30) 

where we have used the one-dimensional advection equation to convert the time-

derivatives of A3 to space derivatives, viz 

dA, 

dt 
d2A3 

dt2 

dA3 
-u0- dx 

un 

,d2A3 

dx2 

Substitution of the Taylor-series expansions in time and space from Eqs. (4.28) 

and (4.29) 'into the finite-volume discretization for a type A cell (4.27) gives the 

modified equivalent partial differential equation, to 0(At2, Al2), 

dA <dA tdA d2A A w" = Ad^-2 + k±^ + kA 

dt dx dy xx dx2 

d2A 
yy gy2 

d2A 
xy dxdy 

(4.31) 

where the modified equivalent advective velocities are given by 

uA = -uo (l + 2cos29 + y/lsax2d\ , 

vA = -^=uo\l-2cos29 + —=s\n29 
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and the modified equivalent diffusion coefficients are given by 

*& = 2UoAl — = s i n . „ 
3\/3 V3 (§+')- Ci 

kA -Kyy _ i i = « o A ( S i n 2 ( f + « ) c o S ( | + « ) , 

*£ = -^"° A i s i n 2 ( f + *Mi + *) ' 
where C\ = UoAt/Al is the unstructured-grid analogue of the Courant number. 

The same analysis can be performed to show that, for a type B cell, the modified 

equivalent partial differential equation of the discretization 

Bn+L = Bn 
AtAl 

l-\Ua\A^-\Uy\A? + \Up\B?} 

= (1 — CQ — C 7 ) 5 " + CaA\ + C^A1^ (4.32) 

is given by 

dB BdB BdB ,Bd2B lBd2B lRd2B 

dt dx dy ™dx2 yydy2 xydxdy' 

where the modified equivalent advective velocities are given by 

u = lUoi l + 2cos20 + 4sin2# V3sin2#) , 

vB = —f=uo ( 1 - 2 cos2 9 + —= sin 29 ) , 
V3 \ V3 

and the modified equivalent diffusion coefficients are given by 

*& = 2 U o A / 7= COS . „ 
3VS V6 (h'h^*"-0-

kB - -
3^3 

kB - - ° 
xy ~ 3^3 

UQAI 

UQAI 

sin 20 cos 0 + sin 2 [8 + ^ j sin (d + ^\ , 

sin 2 
IX 

cos (!+») — sin 28 sin 8 

(4.33) 

-6 / V6 

As pointed out by Holleman et al. (2011), the modified equivalent partial differential 
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equations for type A and B cells in Eqs. (4.31) and (4.33) show that the finite-

volume discretizations (4.27) and (4.32) are inconsistent with the one-dimensional 

advection equation (4.1) because of the introduction of nonzero lateral advection vA 

and vB which vanish only when 8 = n/6. Furthermore, streamwise velocities uA ^ UQ 

and uB 7̂  Uo unless 8 = 0 and 7r/3. Despite the inconsistency with the modified 

equations, the average of the independent forms for types A and B cells is consistent 

2UQ and vA + vB = 0. The average of the modified equations for since u u B _ 

type A and B cells in Eqs. (4.31) and (4.33) is thus given by, to 0(At2, Al2) and after 

substitution of s = (A + B)/2, 

ds ds d2s 

dt ox dxz 

d2s d2s 
yy dy2 xy dxdy ' 

(4.34) 

where the numerical diffusion coefficients are given by 

fcxx = JUQAI 
5 7 

— = sin 8 H cos 9 — Ci 
12V3 12 

JL 
\2 

1 

kyy = —uoAl cos 9 

fcxy = -uoAls'va.9 

1 + - = sin 26> 
Vs 

1 -= sin 29 

(4.35) 

Although the independent analysis results in the correct advective speed UQ a n ( i the 

lateral modified velocities cancel, we would expect the lateral diffusion coefficient kyy 

to vanish when 8 = 0 because there cannot be any net lateral transport when one of 

the triangles edges is aligned with the flow, i.e. when 8 = 0 and 7r/3. However, from 

Eq. 4.35 when 8 = 0 and 7r/3 the lateral diffusion coefficient is kyy = (l/12)uoAl. 

As described in the next section, the combined analysis of Holleman et al. (2011) 

removes the diffusive bias and gives the correct numerical diffusion coefficient. 

Combined analysis for first-order upwinding 

Following the method in Holleman et al. (2011), a combined analysis is performed 

using a recurrence relation by expanding the values for type B cells in terms of values 
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in type A cells. Details can be found in Holleman et al. (2011), although the basic 

methodology is repeated here for clarity. Considering a type B cell, the discretization 

given by Eq. (4.21) for cell B\ in Fig. 4.4 at time step n is given by 

B\? B ra-1 AtAl 
[-\Ua\Ar1 - WMr1 + \up\Br1] 

= eB?-1 + CaA\-x + CyA?-1, (4.36) 

where e = 1 — Ca — C7. Expressing 5™ in terms of k time steps prior to time step n 

gives 
k k 

B? = ekB?-k + CaJ2 AT'^1 + CfJ2 AT'^'1 • (4-37) 
.7 = 1 j = l 

The Taylor-series expansion about time level n — 1 to obtain J5" is given by 

dBn 1 d2Rn 1 d3Pn 

Using Eqs. (4.37) and (4.38) together gives 

(4.38) 

j = 0 

^ _ ( i + 1 ) A ( M + l 0 + 1 ) w ^ 

+a 
a An 1 pjl An 

(4.39) 

Rearranging Eq. (4.39) gives 

*r = E' 
3=0 

(j + l ) 2 Ai 2 

dAn 

0,-4? + C,Al - (j + 1)A( ( C „ ^ l + A C 7 - ^ ( c . ^ 

C a 

d2A\ d2A^ 

~d^+ 1~dl2~ 

(4.40) 

file://-/Ua/Ar1
file:///up/Br1
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The infinite series in Eq. (4.40) can be expressed in closed form to give 

r>n (/^t An rt An\ ( /~i @**-\ /~i ®/l2 \ 

BX = T - ^ A + cfA2) - 7 j 3 ^ [Ca^r+c^^r) 
| (l + e)At2 / d2An

 | cd
2Al 

2(1 - e)3 V dt2 7 dt2 

(4.41) 

Considering a type A cell, the discretization given by Eq. (4.21) for cell A3 at time 

step n + 1 is given by 

An
3

+1 =An
3 - ^-[-\Up\B? + \Ua\A

nz + \U7\A
n
3] {A ^ 

=(l-Cp)A^ + CpBt 

Substitution of B" from Eq. (4.41) into Eq. (4.42) produces a discrete equation in 

terms of Af, A™+1 and the time derivatives of A^. Expressions for Ai and A2 are 

obtained in terms of ^3 using the Taylor-series expansion about A3 to obtain 

A - A 4- A^dA3 ,AAdA3 1 . AA]2 d2A3 1 , A A , 2 d2A3 

Ai-A3 + 5xi -g^ + 5yi - ^ + 2 ^ ) - ^ - + 2 ^ } ~W 

, zAAsAA Q2A 1 , , ^ 3 # % 1 . . A . 3 ^ 3 
xi yi dxdy 6 l xi > dx3 6 V * ; dy3 

, I ( * W , ^ ^M 3 4. 1 A ^ (*AA\2 d3A3 (4-43) 
2 v Xl ' yi dx2dy 2xl yyi> dx2dy 

Km=0 \ m 

where 5AA and 6AA are the x- and y-components, respectively, of the vector pointing 

from the center of cell Ai to cell A3. Differentiation of Eq. (4.43) in time and applying 

Eq. (4.1) gives 

dAi (dA3 rAAd2A 
= -u0 dt \ dx 

d2Aj o (d2A 

dt2 

+ S«^+0{W) 
/ , 2 , x ( 4 - 44) 

«®n)+*<**) 
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Substitution of the Taylor-series expansions for Ax and A2 from Eq. (4.43) into 

Eq. (4.42) and converting the second time derivative to a spatial derivative with 

Eq. (4.44) gives, to 0(At2,Al2), the modified partial differential equation of the finite-

volume discretization for type A cells upon replacing A by s, 

ds ds d2s d2s d2s 
^ T + W o ^ - = K X X —^ + fcyy—^ + fcxy——-, (4.45) 
dt dx dx2 dyz dxdy 

where the numerical diffusion coefficients are given by 

7 
fcxx = ^u0Al 

.8\/3sin2(0 + 7r/3) 
-Ci 

kyy = —=uoAl sin 39 , (4.46) 

1 / 2 
-•Uo Al sin 9 1 , 
2 V V ^ 

/cxy = -UQ Al sin 9 ( 1 — sin 20 

and 7 = - 8 sin5 8 + 4>/3 sin 20 sin3 8 + 2 sin3 0 - 3A/3 sin 20 sin (9 + 6 sin0 + 3 ^ cos 8. 

This shows that the combined analysis produces a modified equivalent partial differen

tial equation that is consistent with the one-dimensional equation (4.1). Furthermore, 

the lateral and cross diffusion coefficients vanish when 8 = 0 which gives kyy = kxy = 0 

and 

kxx = ±u0Al Q - Ci) . (4.47) 

The equivalent one-dimensional grid spacing between triangle centers is Ax = Al/2, 

so that the diffusion coefficient is given by 

*4 l d = ^ 0 A x (1 - Co) , (4.48) 

which is identical to the form of the diffusion coefficient on Cartesian grids in Eq. (4.4). 

Like the Cartesian discretization, first-order upwinding with forward in time contains 

numerical diffusion that is proportional to the grid spacing. 
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0 9 -

08 

0 rt/6 n/3 
8 

Figure 4.5: Stability region for first-order upwinding based on the sign of the principle 
components of the diffusion tensor dx and d2 obtained from the combined analysis. 
When dx > 0 and d2 > 0 the scheme is stable. The black line shows the contour of 
d2 = 0 while dx > 0 for 0 < C, < 1 and 0 < 0 < TT/3. 

Stability analysis of first-order upwinding 

Eq. (4.48) shows that the condition on stability for the unstructured-grid discretiza

tion when 0 = 0 is identical to that for the discretization on one-dimensional Carte

sian grids which requires 0 < Co < 1 in order for k^ > 0. In general, however, 

the constraint can be more limiting for 0 ^ 0. A stability analysis is performed by 

diagonalizing the diffusion tensor, and stability is guaranteed when dx > 0 and d2 > 0. 

Fig. 4.5 shows the contours of dx = 0 and d2 = 0 with respect to C/ and 0 

using the combined analysis for 0 = [0,7r/3]. The Courant number constraints are 

obtained numerically, dx is always positive, and thus the Courant number restriction 

is dependent on d2. The least restrictive Courant number occurs when 0 = 0 and 

7r/3 which requires that 0 < Ci < 1/2, and the most restrictive Courant number 

occurs when 0 = 7r/6 which requires that 0 < C; < x/3/4 ~ 0.43. The equivalent 

condition by assuming Al = 2Ax when 0 = O i s O < C o < l and when 0 = 7r/6 is 

0 < Co < \ /3 /2 a; 0.87. In comparison, the constraint is stricter on two-dimensional 

Cartesian grids, and the most restrictive Courant number occurs when 0 = 7r/4, which 

requires that 0 < C0 < \/y/2 « 0.71. 
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Second-order scheme 

In this section, we derive the form of the numerical diffusion coefficients for a second-

order advection scheme for which the face values are given by 

(sf)j = ^ + si) ~ 2^CJ(SJ ~ 5 ' ) > (4-49) 

where Sj is the scalar value in the triangle sharing face j with triangle i, the face 

Courant number is given by Cj = UjAtAl/a, and ip is the limiter function. Eq. (4.49) 

represents a sum of a higher-order average term from central-differencing and a lower-

order diffusive term. When ip = 0, Eq. (4.49) reduces to central-differencing, and 

when ip = 1, it becomes the Lax-Wendroff scheme. On one-dimensional Cartesian 

grids the Lax-Wendroff scheme eliminates numerical diffusion when ip = \ which in

troduces anti-diffusion at the expense of dispersion. However, on unstructured grids, 

the choice of ip = 1 merely reduces the numerical diffusion and produces dominant 

numerical dispersion. In the case of the TVD scheme, the value of ip can be cho

sen such that the total variation does not increase in time, which ensures that the 

method is monotonocity preserving (Roe 1984; Sweby 1984). Hirt analysis cannot 

be performed for the TVD scheme with a nonconstant ip, and thus we assume tp is 

constant in our derivation. 

The cells considered in the derivation of the modified equivalent equation for 

the second-order scheme are shown in Fig. 4.4. For a type A cell (i.e., Ua = \Ua\, 

Up = —\Up\ and ?77 = |£/7|), the scalar values on the three faces of cell ^43 are given 

by 

sa = ^(A3 + B3)-^Ca(B3-A3), 

s7 = 1-{A3 + B2) - \^C1(B2 - A3), (4.50) 

sp = ^(A3 + Bx) + ^Cp(Bx-A3). 

For a type B cell (i.e., Ua = —\Ua\, Up = \Up\ and U^ = —1£/7|), the scalar values on 
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the three faces of cell Bx are given by 

1 
sa = ^(Bx + Ax) + -ipCa{Ax - Bx), 

s1 = ^(B1 + A2) + ^ipC1(A2-Bx), 

sp = \(Bx + A3) -l-ipCp{A3- Bx). 

(4.51) 

Applying a similar analysis as in first-order upwinding, we perform the Hirt anal

ysis (Hirt 1968) to determine the modified partial differential equation using both 

independent and combined analyses. 

Independent analysis for the second-order scheme 

Considering a type A cell, the discretization given by Eq. (4.21) for cell A3 at time 

step n + 1 is given by 

An+l _ An _ 
^ 3 — ^ 3 

AtAl 
\Un 

l-{An
3+Bn

3)-
l-ipCa{Bn

3-A
n

3) 

+ \U^ 

-Pp 

l_{An + Bn)_llpCi{Bn_An) 

l-{An
3+Bnx) + \ipCp{Bnx-An

3) 

(4.52) 

F 7 - Pp\An
3 - MQBl - MyB% - MpBl 

where Pa = \Ca{\ + ipCa), P 7 = |C 7 (1 + V>C7), Pp = -\Cp{\ - ipCp), MQ = 

|C Q (1 - ipCa), M7 = | ( 1 - ipC7), Mp = -\Cp(l + ipCp). Applying the Taylor-series 

expansions in time and space (4.28 and 4.29), the modified partial differential equation 

of the finite-volume discretization (4.27) for type A cells is given by, to 0 (Ai 3 , AZ3), 

dA tdA 

dt dx 

dA , , d 2 A . , A d 2 A , A d2A 
v"dy ~k™dx2 +kyy dy2 kA 

xydxdy 
kA ^ x x x dx 3 

A &A A d3A A d3A 
+ yyy5ys + ^yQx2dy+ y-yydy2dx' 

(4.53) 
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where the modified equivalent advective velocities are given by 

u = u0 I 1 j=ipCi sin 0 -I—=ipCi sin 20 cos ( 
V v 3 V3 

vA = -2V3uoipCi cos 0 M - ^ cos2 0 j , 

the modified equivalent diffusion coefficients are given by 

*£ = y^oAl 
Ky = -T^oAZ 

6(ip - l)Ct - V3sin0 + 2\/3sin20cos0 

2ipd + VS sin 0 - 2 ^ sin 20 cos 0 

^xy = ^UoAl COS 0 (l - 1 COS2 d\ , 

and the modified equivalent dispersion coefficients are given by 

(4.54) 

(4.55) 

--U0AZ2 ( 1 - 4C,2 - -^=ipQ sin0 
24 V 3v/3 

20 
ipCi sin 20 cos 0 , 

3>/3 

^yy = - T T T ^ o A f V C i cos 0 M - - cos2 0 ) , 

kt„ = -^-UoAfipCi cos0 ( 1 - \ cos2 0 1 , 
xxy 

xyy 

4 

•—uo Al2 ( 1 + -y= V'Q s i n # ^ Q sin 20 cos 0 

(4.56) 
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Similarly, for a type B cell, the discretization given by Eq. (4.21) for cell Bx at time 

step n + 1 is given by 

Brx = Bn_AtAl{_lUal 

ILL 

\{B
n
1+Anx) + \ipCa{Ani-Bnx) 

\UR 

\(B? + A2) + ±IPC7(A2-B?) 

l-{B^ + An
3)-\ipCp{An

3-B^) 

(4.57) 

= (1 + Ma + M7 + Mp)B^ + PaA\ + P^An
2 + PpAn

3 . 

Applying the Taylor-series expansions in time and space (4.28 and 4.29), the 

modified partial differential equation for type B cells is given by, to 0(A<;3,AZ3), 

dB ,B dB ,B dB „B d
2B ,B d2B B d2B B d3B 

ki -i- y" U ii = h 

dt dx dy KXdx2 ' '"yydy2 ' '"xy dxdy 
+ K dx3 

k B
 d3B B d3B . „ d3B 

+ K T- + fe B 
yyy dy3 ™ydx2dy *yydy2dx' 

where the modified equivalent advective velocities are given by 

(4.58) 

uB = u0 ( 1 -I T=^C; sin 0 -=ipCi sin 20 cos 8 
V v^ \/3 

vB = 2V3uoipQ cos 0 (1 - - cos2 0 j , 

the modified equivalent diffusion coefficients are given by 

(4.59) 

kxx = 12W°A/ 

A& = -u0Al 

6(1 - ip)Q - \/3sin0 + 2\/3sin20cos0 

2ipCt - V3 sin 0 + 2V3 sin 20 cos 0 

kB
v = —— u0Al cos 0 I 1 — - cos2 0 

xy 

(4.60) 
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(4.61) 

and the modified equivalent dispersion coefficients are given by 

*&x = - ^ o A Z 2 ( l - 4C2 + ^=iPQ sin 9 - - ^ Q sin 20 cos 0 ) , 

kB
yy = ^-=u0Al2iPd cos d(l - 1 cos2 0) , 

kB = ^-uoAl2ipCt cos d ( \ - \ cos21 
4 \ 3 

< y = - 2 l u ° A / 2 ( l - - ^V>a sin 0 + -^iPQ sin 20 cos 0 ) . 

The second-order scheme results in numerical dispersion in the streamwise, lateral and 

cross directions, and this is similar on two-dimensional Cartesian grids. The modified 

equivalent equations for types A and B cells in Eqs. (4.53) and (4.58) for the second-

order scheme show that, like the first-order scheme, the finite-volume discretizations 

(4.52) and (4.57) are inconsistent with the one-dimensional advection equation (4.1). 

This is due to the introduction of nonzero lateral advection vA and vB which vanish 

only when 0 = 7r/6. Furthermore, the streamwise advection uA 7̂  Uo and uB 7̂  u-

except when 0 = 0 and 7r/3. Averaging the modified equations for type A and B cells 

with Eqs. (4.53) and (4.58), the modified partial differential equation is given by, to 

0(At3, Al3) and after substitution of s = (A + B)j2, 

ds ds _ d2s d2s d2s d3s d3s 
- r - r UQ~^ "ocx"?; o 1 "'yy"7\ o ' " ' x y T ; 7T~ "T" "ocxx"?; o "T" " 'yyyT^ o 

dt dx dx2 dy2 dxdy dx3 dy3 

d3s d3s 
xxy<9x2<9y xyy dy2dx ' 

where the numerical diffusion coefficients are given by 

(4.62) 

kXx = -^u2
0At(ip -

kyy = g u o A # , 

"'xy = " i 

- 1 ) , 

(4.63) 
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and the numerical dispersion coefficients are given by 

fcxxx---^oAZ2(l-4C2) , 

k — n 
^yyy — u > 

_ - | % A i W ^ - ,A „ (4.64) &xxy = —U0Al21pCi I - COS2 0 - 1 ) COS 0 , 

"'xyy — 777^0^ ' 
4 2 

iV'C/ sin 20 cos 0 =ipQ sin 0 + 1 32 u L3V3" ' 3 ^ 

In contrast to those for first-order upwinding in Eq. (4.34), the numerical diffusion 

coefficients are independent of 0 and the cross diffusion vanishes. When ip = 0, the 

negative streamwise diffusion leads to an unstable scheme, and the lateral diffusion 

vanishes as expected when one of the triangle edges is aligned with the flow. However, 

when ip = 1 the streamwise diffusion vanishes and the lateral diffusion which is inde

pendent of 0 is positive. This leads to net lateral transport when one of the triangle 

edges is aligned with flow, i.e. 0 = 0 and 7r/3. Similar to first-order upwinding, this 

diffusive bias can be removed with the combined analysis as described in the next 

section. 

Combined analysis for the second-order scheme 

Following the methodology for first-order upwinding, we perform a combined analysis 

by using a recurrence relation to expand the values for type B cells in terms of values in 

type A cells for the second-order scheme. Considering a type B cell, the discretization 
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given by Eq. (4.21) for cell Bx at time step n is given by 

AtAl, 
BI = B\ n-l U \sr' 

ua\t>a 

_ W - . _ ^ < _ | K '1 
a 

-lU^-' + lUpls* 

l-{Bnx-X + An-') + \pCa{ATX - Br1) 

- | £ / - v 

\U p\ 

^r1+Ar1) + \pc,{An
2-' - B^-1) 

l-{Brx+A^-1) - \pcpiAr1 - Br1) } 
i + hoa{\ - ipca) + lc7(i - ipc7) - hop{\ + ipcp) B n-\ 

1 + ^CQ(1 + ipC^Ar1 + \c.il + ipC^Ar1 - \cp{l - ipCp)An
3 

n-l 

(4.65) 

Assuming A = 1 + \Ca{\ -ipCa) + |C 7 (1 -ipC^) - \Cp{l + ipCp), Eq. (4.65) simplifies 

to 

B% = xBr1 + PcAr1 + i v r 1 + - v r 1 • 
Expressing B " in terms of k time steps prior to time step n gives 

(4.66) 

k k k 

B\ = xkBrk+p*Yl Ar^3'1+piJ2 Ar3^1+p^J2 A3~j 

j=X j=l j=l 

(4.67) 

Using Eqs. (4.67) and (4.38) together gives 

Bnx=Y.X3\P« 
3=0 

f)An 1 pp. An 

+ P 7 

f)An 1 r)2 An 

A--(j + l)At^+
l-(J + l)2At2(^ 

f)An 1 r>2 An~ 
A-3-(j + l)At^+

l-(j + l)2At2^ 

(4.68) 

file:///pcpiAr1
file:///c.il
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Rearranging Eq. (4.68) gives 

^ = A S XJ 1 [P«Ai + P ^ 2 + P?An
3] - jAt 

3=0 

„ dA 

dA? 
<~dT 

fl at + 
fAt2 d2A\ d2An 

a dt2 7 dt2 
2 n d2A% 

&4j 

' dt 

- - [ P ^ + P ^ + PpA^]. 

The infinite series in Eq. (4.69) can be expressed in closed form to give 

(4.69) 

B" = T=x[PaA"+ P"Al + PpA"] ~ li^v (i - xy 
dAl dAl 

a dt + 7 dt 

+P0 

dAl1 

~~dT 

X)At2 , 0M? d2A% 
2(1 - A)3 | / a dt2 7 dt2 + P? 

d2A% 

dt2 

(A2 + 4A + 1)A£3 

6(1 - A)4 
d^Ai p aM£ a3^! 

Q d;3 + 7 dt3 + p dt3 

(4.70) 

Similarly, the infinite series in the expressions for B% and B3 can be expressed in 

closed form to give 

£-2 = YZ^[PaA2 + P,An
3 + PpAl\ - - ^ — 

(1 - A)2 L " dt 
-* rv ^ . I - -l -y 

dAn
3 

dt 

-Pa 
dAl 

~~dt 

(1 + X)At2 

2(1 - A)3 
p 0M? p d2An

3 
|2 An 

(A2 + 4A + l)At3 

B* = 

,pdA% 

6 ( 1 - A ) 4 

(1 + X)At2 

Q at3 

5i2 ' ~ 7 9i2 

j 3 An 

7 "a3 

Pfl 
92A 

a?:2 

„ 0M? n d5A5 
+ P , - ^ + P s ^ 

^ [ ^ ^ 3 + ^ ? + P^] - ^ ^ - 2 dt 

dAVj 

'~dt 

2(1 - A)3 

|2 4 " 

P 
S M 

(A2 + 4A + l)Af;3 

6(1 - A)4 dt3 

a dt2 

n 
3 +P, 

+ Pn 
d2AVj d2An 

] dt2 

d3A% „ d3A7 „ d3A% 
7 dt3 + Pp-

dt3 

(4.71) 
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Considering a type A cell, the discretization given by Eq. (4.21) for cell A3 at time 

step n + 1 is given by 

4«+i — An N/7 l«n -i- 177 l«n — I77„lcnl A 3 —^3 „ il (7alSa + l^7lS7 I^P/SJ , , „ n , a (4.72) 
= [1 - PQ - P 7 - P ^ - MQP3" - M7fi2" - MpBl. 

Substitution of B^, B% and P J from Eqs. (4.70) and (4.71) into Eq. (4.72) produces 

a discrete equation in terms of A?, A™+1 and the time derivatives of Ai. Substitution 

of the Taylor-series expansions for Ax, A2, At, A5, A6 and A7 from Eq. (4.43) into 

Eq. (4.72) and converting the second time derivative to a spatial derivative with 

Eq. (4.44) gives, to 0(At3,Als), the modified partial differential equation of the 

finite-volume discretization for type A cells upon replacing A by s, 

ds ds d2s d2s d2s d3s d3s 
"777 i ^ O 7 | — "ocx 7J 0 ~r "Vy 7J o i ""xy 7 j ?; r " 'xxx 7 ; O "T" "Vyy 7J 7 

a/; ax ax2 ay2 ax ay dx3 ay3 

<93s , <93s 
(4.73) 

xxy dx2dy xyy dy2dx ' 

where the numerical diffusion coefficients are given by 

fcxx = 7.ulAt ( — ip cos6 0 - 8 ^ cos4 0 + 3 ^ cos2 9 + -ip -1 

fcyy = j^ug Aty> sin2 0(1 - 8 cos2 0 + 16 cos4 0), (4.74) 

fcxy = -u2
QAtip sin 20 ( 1 - — cos2 0 + — cos4 0 ) , 

and the numerical dispersion coefficients are given by 

fcxxx = ~YAUOM2 ^ ~ ^ ^ ' 

kyyy = 7^uo^2 sin 20 (16 cos4 0 - 1 6 cos2 0 + 3) , 
48 

x̂xy = -—u0Al2 sin 20 (16 cos4 0 - 1 6 cos2 0 + 3) , 

A;xyy = ~-u0Al2 sin2 0 (16 cos4 0 - 8 cos2 0 + l) . 

(4.75) 
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This shows that the combined analysis produces a modified equivalent partial differ

ential equation that is consistent with the one-dimensional equation (4.1). Similar to 

first-order upwinding, the lateral and cross diffusion coefficients vanish when 0 = 0 

which gives 

k^ = ^u2
0At(iP - 1). (4.76) 

which is identical to the form of k^ for two-dimensional Cartesian grids in Eq. (4.18) 

when 0 = 0. Similar to Cartesian grids, the lateral and cross-dispersion coefficients 

vanish when 0 = 0 and the longitudinal dispersion is 

fcxxx = - ^ 0 A ^ 2 ( l - 4 C 2 ) . (4.77) 

Using Ax = AZ/2, the equivalent longitudinal dispersion coefficient is 

k^ =-\uoAx2 {I - C2) , (4.78) 

which is identical to the dispersion coefficient on two-dimensional Cartesian grids in 

Eq. (4.19) when 0 = 0. 

Stability analysis for the second-order scheme 

A stability analysis is performed by analyzing the principal diagonal components, . 

which are obtained from diagonalization of the diffusion tensor as was performed for 

first-order upwinding in Section 4.2.2. For the case that ip = 1, the unstructured-grid 

scheme is unstable with dx > 0 and d2 < 0, although the Lax-Wendroff scheme on 

one-dimensional Cartesian grids removes numerical diffusion, i.e., k™ = 0 with ip = 1 

(Eq. 4.14). ip > 1.5 results in a stable unstructured-grid scheme with dx > 0 and 

d2 > 0. We choose ip = 1.5 in our simulations to minimize numerical diffusion and 

for stability. 

The Courant number constraint is determined from Von Neumann stability anal

ysis (VonNeumann and Richtmyer 1950) and by substituting s = sexp[i(kx + ly)], 

which gives us 0 < C; < l/2y/ip. The choice ip = 1.5 leads to the Courant number 

file://-/uoAx2
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condition 0 < Ci < l / \ / 6 ~ 0.41 for all 0. The equivalent constraint by assum

ing AZ = 2Ax is 0 < Co < 2/-\/6 ~ 0.82. This is similar to the most restrictive 

Courant number constraint for first-order upwinding on unstructured grids, which 

is 0 < Co < \ /3 /2 « 0.87 when 0 = ir/6. A more restrictive Courant condition 

is found on Cartesian grids for both the first- and second-order schemes, which re

quire 0 < Co < 1/A/2 ~ 0.71 for stability. We validate the diffusion and dispersion 

coefficients in the next section. 

4.3 Numerical simulations 

We perform numerical simulations to verify the analytical theory developed in the 

previous sections. The method of spatial moments analysis is employed to estimate 

the numerical diffusion coefficients in idealized simulations. This technique is com

monly used to study the transport of a solute plume in groundwater (Freyberg 1986; 

Roberts et al. 1986; Sudicky.1986; LeBlanc et al. 1991). The zeroth moment yields 

the total mass of the plume, the first moment yields the mean location of the center 

of mass of the plume, and the second moment relates to spreading of the plume about 

its center of mass. We define the numerical diffusion coefficients that are computed 

with the spatial moments analysis as &;XX)m, ŷy,m5 and /cxyjm, and these are given by 

* « . = 5 T £ , (4.79) 

kyy,m = 3 " ^ ' (4 '8°) 
lacov x y 

«xy,m 2 m , 14.81J 

where a* = m2^ — ( m*) is the variance in the x direction, av = — — ( — ) is the 
x mo y mo J ' y mo ^ mo y 

variance in the y direction, and covxy = — mxy is the x-y covariance. Here, m0 is the 

zeroth moment, mi x is the first moment in the x direction, mxy is the first moment 

in the y direction, m2x is the second moment in the x direction, m2y is the second 

moment in the y direction and mxy is the cross-correlation. The diffusion coefficients 

computed with the spatial moments analysis are written as a diffusion tensor of the 
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form 

K„ 
i/V 
2^xy 

2 f t -x y 

it 
(4.82) 

yy 

In order to compare these to the flow-aligned analytically derived coefficients, Km is 

transformed into a coordinate system that is aligned with the flow using 

Kx = ReKmR9 (4.83) 

where the rotated diffusion tensor is given by 

Kr 

k ±k 
"TCX,!- 2 xy>r 

±k k 
2 ̂ xy.r «<yy,r 

(4.84) 

and where the rotation matrix is given by 

Re = 
cos 0 — sin 0 

sin 0 cos 0 
(4.85) 

In what follows, rather than rotating the grid, we keep the grid fixed but rotate the 

flow by an angle 0 with respect to the grid. This amounts to a rotation in the opposite 

sense of that depicted in Fig. 4.2. The diffusion coefficients in Section 4.2.2 are then 

compared to the transformed coefficients in Eq. (4.84). 

We advect a passive tracer field in a channel of length L = 100 km and width 

W = 100 km. The tracer field is advected in a steady velocity field with a magnitude 

of Uo = 1 m s _ 1 and a Courant number Ci = 0.1, so that the time step size is given 

by At = CIAI/UQ. The velocity field is given by Uo = u0 cos0ex + u0 sin9ey, and the 

tracer field is advected for a total time of 50,000 s. 

The domain is initialized with a Gaussian passive tracer field at t = 0 of the form 

s(x,y,t = 0) = exp 
(x - x0)2 (y - yof 

2R2 2R? 
(4.86) 

where x0 = 20 km, y0 = 20 km, and R = 5 km. We compute advection of the passive 

tracer on three different grids consisting of equilateral triangles with side lengths given 
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by AZ = 2000 m, AZ = 1000 m, and AZ = 500 m using first-order upwind and the 

second-order scheme with ip = 1.5. For each grid, advection is computed with the 

flow aligned at an angle 0 = rmr/12, m = 0,1, 2,3,4, with respect to the grid. 

Results 

The numerical diffusion and dispersion coefficients are highly sensitive to the direction 

of flow (Eqs. 4.46, 4.74 and 4.75). The coefficients are periodic in the interval 0 = 

[0, vr/3], since when the grid becomes aligned with the flow, i.e., 0 = 0 and 7r/3 there 

are no fluxes through faces, and numerical diffusion and dispersion only exist in the 

streamwise direction parallel to the flow. We present two cases in our numerical 

simulations, namely 0 = 0 which has anisotropic diffusion, and 0 = 7r/6 which has 

approximately isotropic diffusion. 

The Gaussian passive tracer field advected with first-order upwind and the second-

order scheme after a total time of 50,000 s is shown in Fig. 4.6 for the mesh with 

AZ = 2000 m (the coarse grid is shown to accentuate the errors). The exact solution 

is obtained by translating the initial tracer field and shown in black for comparison. 

First-order upwinding shows greater streamwise compared to lateral diffusion when 

0 = 0, and we observe dx > d2. This is evident from Eq. (4.46) which shows dx = 

kxx 7̂  0 and d2 = kyy = 0 when 0 = 0. A larger amount of diffusion is obtained when 

0 = 7r/6 compared to 0 = 0, since the maximum contour is 0.25 when 0 = 7r/6, and the 

maximum contour is 0.5 when 0 = 0. For the case that 0 = 7r/6, the diffusion is nearly 

isotropic, i.e. dx ~ d2. The second-order scheme introduces less numerical diffusion 

than first-order upwinding, and for both 0 = 0 and 7r/6 the maximum contours are 

0.75. Negative contours are observed for the second-order scheme which is expected 

since the Lax-Wendroff scheme produces oscillations due to the numerical dispersion. 

For the case that 0 = 7r/6, greater numerical dispersion is obtained compared to 0 = 0 

(indicated by the negative contours) and this explains the slightly distorted numerical 

solution with 0 = 7r/6. 

Fig. 4.7 compares nondimensional analytical diffusion coefficients to those com

puted from idealized simulations as a function of 0. The results show that the com

bined analysis produces the correct diffusion coefficients although the independent 
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analysis does not. For first-order upwinding, the streamwise diffusion coefficients are 

consistently overpredicted using the independent analysis. The lateral coefficients are 

overpredicted using the independent analysis except when 0 = 7r/6, and the mag

nitudes of the cross-diffusion coefficients are underpredicted using the independent 

analysis with the exception of 0 = 0, 7r/6 and 7r/3. For the second-order scheme, the 

magnitudes of the streamwise, lateral and cross-diffusion are overpredicted with the 

independent analysis except when 0 = 0, 7r/6 and 7r/3, which produces the correct 

diffusion coefficients using both methods. 

Figure 4.6: Result of advecting a Gaussian passive tracer field using first-order upwind 
(top row) and the second-order scheme (bottom row) on the grid with Ax = 2000 m. 
The results are shown after 50,000 s for 0 = 0 and 0 = 7r/6. The grid cell size is 
represented by a small triangle on the top left hand corner of the plots. Legend: 
Numerical solution (black), Exact solution (red). 

As the method of spatial moments analysis cannot be employed to compute nu

merical dispersion coefficients from idealized simulations, the dispersion coefficients 

in Eq. (4.75) are verified by comparing results from idealized simulations on unstruc

tured grids to those obtained with a pseudospectral method. The pseudospectral 
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First-order upwind Second-order scheme 

Figure 4.7: Comparison of theoretical diffusion coefficients to those computed using 
first-order upwind and the second-order scheme on the grid with AZ = 500 m. Legend: 
Analytical fcxx (—), kyy ( ), /cxy (•••), Idealized simulations using spatial moments 
analysis (*), Independent analysis (red), and Combined analysis (black). 

method (Kosloff et al. 1984; Reshef et al. 1988) is a highly accurate numerical mod

eling technique that computes the spatial derivatives by means of the Fast Fourier 

Transform (FFT). The time advancement is performed with the Runge-Kutta method 

(RK4) (Runge 1895; Kutta 1901), which leads to an essentially "exact" solution of the 

partial differential equation. The pseudospectral method solves the following partial 

differential equation on Cartesian grids, 

ds d2s 
o , i U • V S — fcXx,s p. 2 "'" 

d2s d2s 
yy>sotf+ xy'sdx3y" 

kv 
dh 

'dy3 k yyy> 

d3s 
'sdy3 

+ k xxy,s 

d3s 

dx2dy + k 
d3i 

(4.87) 

xyy,s dy2dx ' 

where the diffusion and dispersion coefficients are aligned with the Cartesian grid 

and not with the flow direction. These coefficients are obtained by rotating the flow-

aligned coefficients in Eqs. (4.74) and (4.75) to a Cartesian coordinate system by the 

angle —0. 

The results from our unstructured-grid simulations are compared to those obtained 

from the pseudospectral method by advecting a Gaussian passive tracer field with 

the second-order scheme. The unstructured-grid simulations employ a grid with side 
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6 = 0 8 = it/6 
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Figure 4.8: Comparison of diffusion and dispersion coefficients from numerical sim
ulations and the spectral method for 0 = 0 and 7r/6. The results are shown after 
50,000 s. The triangle in the upper left-hand corner of the plots indicates the tri
angle size used in the calculations. Legend: Numerical simulations (black), Spectral 
method (red). 

length given by AZ = 2500 m, while the pseudospectral method employs a Cartesian 

grid with side length given by Ax = 1666 m. Fig. 4.8 shows the results obtained 

with both methods, where the good fit verifies the analytical diffusion and dispersion 

coefficients in Eqs. (4.74) and (4.75). When 0 = 0, streamwise dispersion is observed 

since fcxxx < 0, while the remaining terms are eliminated. Similarly, diffusion is only in 

the streamwise direction when 0 = 0. When 0 = 7r/6, dispersion is in the streamwise 

and cross directions since /cxxx < 0 and fcxyy < 0. In this case, isotropic diffusion is 

observed. 

4.3.1 Accuracy analysis 

The modified equation method leads to truncation errors from which the order of 

accuracy of the finite-difference scheme is defined (Warming and Hyett 1974). On 

unstructured grids, both first-order upwind and the second-order schemes contain 

numerical diffusion that is first-order in Ax and At (Eqs. 4.46 and 4.74). Although 

the formal order of accuracy based on the truncation errors of the modified equation is 

first-order for the second-order scheme, an accuracy analysis by computing the error 

norms shows that the method is second-order in time and space. The error norm is 
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given by 

E = [ E ' ( ' 2 " Sl)*l'2 . (4.88) 

For the spatial analysis, S2 is the tracer field at a given time and s\ is the exact 

tracer field, which is obtained simply by translating the original tracer field after the 

given time in the absence of diffusion. Comparison to the exact solution eliminates 

the necessity of unstructured-grid interpolation. For the temporal analysis, Sx is the 

tracer field computed with a time step of At and S2 is the tracer field computed with 

a time step of At/2. 

The accuracy analysis is performed for first-order upwind and the second-order 

scheme with ip = 1.5 after running the simulation for 50,000 s. For the spatial analysis, 

the tracer field is advected on three different grids consisting of equilateral triangles 

with side lengths given by AZ = 4000 m, AZ = 2000 m and AZ = 1000 m. The steady 

velocity field has a magnitude w0 = 1 m s_ 1 , and we use a time step of At = 100 s. 

For the temporal analysis, the tracer field is advected on a fine mesh with the side 

length given by AZ = 500 m, using time steps of At = 200 s, At = 100 s, At = 50 s 

and AZ = 25 s. 

Fig. 4.9 shows accuracy in time and space using first-order upwind and the second-

order scheme. As expected, first-order upwinding is first-order accurate in time and 

space, while the second-order scheme is second-order accurate in time and space. 

The second-order scheme is more effective in reducing errors compared to first-order 

upwinding, and smaller errors are obtained with 0 = 0 compared to 0 = 7r/6. This 

is evident from Fig. 4.7 which shows numerical diffusion coefficients are one order of 

magnitude smaller for the second-order scheme compared to first-order upwinding, 

and Fig. 4.6 which shows 0 = 0 is less diffusive than 0 = TT/6. 

4.4 Summary and discussion 

The quantification of numerical diffusion from scalar transport is employed to assess 

the performance of first-order upwind and second-order scalar advection schemes on 

unstructured grids. A novel approach is proposed to analytically derive numerical 
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Accuracy in space Accuracy in time 

Figure 4.9: Accuracy in space and time for 0 = 0 and 0 = 7r/6. Legend: 0 = 0 (red), 
0 = TT/6 (black), first-order upwind (—,o), second-order scheme ( ,*). 

diffusion coefficients by extending the Hirt analysis (Hirt 1968) on Cartesian grids 

to unstructured grids. We assume uniform flow on a grid composed of equilateral 

triangles in the derivation of analytical numerical diffusion coefficients. 

Two methods, termed the independent analysis and combined analysis are ap

plied to compute the modified form of the advection equation. The independent 

analysis separately derives the modified equations for the two types of cells, and this 

method leads to an overprediction of numerical diffusion coefficients. The combined 

analysis uses a recurrence relation to derive the equation for one cell, and Holleman 

et al. (2011) show the combined analysis obtains the correct diffusion coefficients for 

first-order upwinding. We extend this method to derive diffusion coefficients for the 

second-order scheme, and show that these match coefficients obtained from idealized 

simulations. The second-order scheme is based on the Lax-Wendroff scheme on Carte

sian grids which stabilizes central differencing but introduces numerical dispersion. 

The numerical diffusion and dispersion coefficients on unstructured grids are com

pared to those on two-dimensional Cartesian grids. In this discussion, we refer to the 

diffusion and dispersion coefficients on Cartesian grids as d?d and k2d respectively. 

Fig. 4.10 shows nondimensional dx and d2 from the diffusion tensor as a function of 0 

with Co = 0.1 on Cartesian and unstructured grids. The figure shows that numerical 

diffusion is comparable on two-dimensional Cartesian grids and unstructured grids. 
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Figure 4.10: Nondimensional dx and c?2 from the diffusion tensor as a function of 0 
with Co = 0.1 for first-order upwind and the second-order scheme from the combined 
analysis. First-order upwind is nondimensionalized with (UQAI) and the second-order 
scheme is nondimensionalized with (it2, Ai) First row is first-order upwind and second 
row is the second-order scheme, with ip = 1, 1.5 and 2. Legend: d\ (—) and d2 ( ), 
black (unstructured grids), red (two-dimensional Cartesian grids). 

For both high- and low-order schemes, d\d = dx and <££• = d2 when one of the edges is 

aligned with the flow. For first-order upwinding, the ratios of min(/i2d) : min(cZi) and 

max(d2,d) : max(/i2) are respectively 0.92 and 1.04. The second-order scheme with 

ip = 1 is unstable on both Cartesian and unstructured grids except when one of the 

edges is aligned with the flow since d2 < 0. The minimum ip that results in a stable 

scheme on unstructured and Cartesian grids are respectively ip = 1.5 and ip = 2. 

Setting the minimum ip for stability on both grids lead to the ratio d2d : dx = 2.5, as 

we require a larger ip for stability on Cartesian grids. 

Fig. 4.11 shows the nondimensional dispersion coefficients as a function of 0 for 

the second-order scheme from the combined analysis with Co = 0 on Cartesian and 

unstructured grids. The figure shows that numerical dispersion is comparable on 

unstructured and two-dimensional Cartesian grids. The dispersion coefficients are 

identical on unstructured and Cartesian grids when one of the edges is aligned with 
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Figure 4.11: Nondimensional dispersion coefficients as a function of 0 with Co = 0.1 
for the second-order scheme from the combined analysis. Legend: /cxxx/(uoAZ2) (— 
), kyyy/(uoAl2) ( ), fcxxy/(itoAZ2) (— • —), /cxyy(iioAZ2) (•••), black (unstructured 
grids), red (two-dimensional Cartesian grids). 

the flow as k2d^/(u0Al2) = ky^/(u0Al2) = —0.04 and the remaining terms vanish. 

The maximum differences in the dispersion coefficients occur when 0 = TT/6 on un

structured grids and 0 = 7r/4 on Cartesian grids, which results in the cross-dispersion 

terms /cxxy/(itoAZ2) = 0 and kxyy/(uoAl2) = —0.125 on unstructured grids while 

k™y/(uoAl2) = -0 .03 and k2d
y/(u0Al2) = 0 on Cartesian grids. For this choice of 

0, the remaining terms are comparable on both grids with the ratio k2^/ [UQAI2) : 

k^/{u0Al2) = 1.33 and ^ y / ( i i 0 AZ 2 ) = fcxxy/(«0AZ2) = 0. 

A stability analysis is performed for first-order upwinding and the second-order 

scheme on unstructured and two-dimensional Cartesian grids. The first-order upwind 

scheme is most restrictive on unstructured grids when 0 = 7r/6 which requires that 

0 < Co < \ /3/2 ~ 0.87. In comparison, the constraint is stricter on Cartesian grids, 

and the most restrictive Courant number occurs when 0 = 7r/4, which requires that 

0 < C0 < l / \ / 2 ~ 0.71. The second-order scheme is stable on unstructured grids 

with ip > 1.5 and 0 < Co < l / \ / 6 ~ 0.82 for all 0. In comparison, on Cartesian 

grids the second-order scheme has stricter conditions for stability with ip > 2 and 

0 < C0 < 1/V2 « 0.71 for all 0. 

The accuracy analysis shows that first-order upwinding is first-order accurate in 

time and space while the second-order scheme is second-order accurate in time and 
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space. Although the truncation errors of the modified equation are formally first-

order for the second-order scheme, the truncation errors are small and the method is 

effectively second-order accurate in time and space as shown by the accuracy analysis. 
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Chapter 5 

Numerical diffusion in San 

Francisco Bay 

5.1 Introduction 

In this chapter, we introduce a domain-averaged formulation to estimate numerical 

diffusion coefficients under general flow and triangulation conditions, which provides 

an estimate for numerical diffusion without the need for analytical methods like the 

Hirt (Hirt 1968) analysis in Chapter 4. The ability of the domain-averaged for

mulation to infer diffusion coefficients are verified with idealized simulations. This 

formulation is particularly suited to compare the performance of high- and low- order 

scalar advection schemes for applications in complex geometries, and is applied to 

San Francisco Bay to assess the impact of tidal dispersion and different time scales 

on the numerical diffusion. 

5.1.1 Inferring the diffusion coefficient for general discretiza

tions 

The diffusion coefficients derived in Chapter 4 made numerous assumptions about the 

flow and the triangulation. Under more general flow and triangulation conditions, it 

is not possible to derive a general form of the diffusion coefficient. In addition, 

107 
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higher-order advection schemes make the task of analytically deriving the form of the 

numerical diffusion coefficient extremely difficult if not impossible. Therefore, in this 

chapter we propose a method to estimate the numerical diffusion without the need 

for analytical methods like the Hirt (Hirt 1968) analysis,in Chapter 4. 

Our method of estimating the numerical diffusion coefficient is based on the work 

of Burchard and Rennau (2007) (hereafter BR07), who developed a method to com

pute the numerically-induced mixing of a passive tracer at time level n, sn, with 

Dnum{s ) = -£• , (5.1) 

where A(sn) = sn — AiAdvd(sn), and Advd is the discrete advection operator. Ex

pression (5.1) is derived from Eq. (18) in BR07, which can be written more generally 

in its three-dimensional form as 

(S-+1)2 ^ K * " ) 2 ] = _ 2 f c n u m V V • V V , (5.2) 

where Vd is the discrete gradient operator and A;num is the effective isotropic numerical 

diffusion coefficient. BR07 show that, for the FTBS discretization given in Eq. (4.2), 

the squared-gradient operator at a given cell i is Vdsf • V d s" = (sf — s"_j)2/Ax2 and 

knum = &num,id given in Eq. (4.4). For more general advection schemes in higher di

mensions, we assume that the modified PDE of the advection equation incurs isotropic 

diffusion of the form 

&numVd • VdS . (5.3) 

Errors in computing an effective isotropic numerical diffusion coefficient will arise 

primarily from the assumption of isotropy. In reality, the numerical diffusion is 

anisotropic as shown in Eqs. (4.46) and (4.74). Therefore, we emphasize that knum 

is an approximate measure of the numerical diffusion. It is representative of the ac

tual numerical diffusion in idealized test cases using uniform equilateral triangles only 

when the flow is at an angle of 7r/6 relative to the grid. 
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Eq. (5.2) can be rearranged to give 

(*n+l\2 _ I n\2 
K- > A t

 { ' + Advd((s")2) = - 2 f c n u m V V • V V , (5.4) 

which is a discrete approximation to the continuous tracer variance equation 

<9s2 

— + u - V ( s 2 ) = 0. (5.5) 

As pointed out by BR07, transport of the tracer variance in its continuous sense is 

conservative, while discrete transport, in general, is not. Discrete conservation of 

tracer variance can be ensured with second-order moments (SOM) methods (Prather 

1986), although in general SOM methods do not ensure monotonicity. Monotonicity-

preservation occurs at the expense of a non-conservative error in the conservation of 

tracer variance Eq. (5.4). The right-hand side of Eq. (5.4) represents the leading error 

that results from the numerically-diffusive (or anti-diffusive) nature of the advection 

scheme. 

As outlined in BR07, it is possible to compute the local numerical mixing. This 

then allows computation of local numerical diffusion coefficients by combining Eqs. (5.1) 

and (5.2) to yield 
D (sn)2 

Knum,local - 2^dgn . ydgn ' V°"DJ 

This allows us to compute fcnum,iocai at e a ch grid cell with Vdsn- V d s n = [(ds/dx)2 + (ds/dy)2]. 

Rather than analyze the local properties of the numerical diffusion coefficient, we 

assume a constant numerical diffusion coefficient and define the global numerical dif

fusion coefficient via a domain integration of Eq. (5.4) to yield 

_z[(snr-(sn+i)2]Av 
num ~ 2At £ Vds" • VdsnAV ' l ' 

where £ implies summation over the entire domain which consists of control volumes 

of size AV, and we assume that the discrete advection operator is locally conservative 

so that its domain-integration vanishes upon assuming that the tracer concentration 

on the boundaries is zero. This form of computing a global measure of the numerical 
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diffusion is more straightforward than domain-averaging Eq. (5.6) because it elimi

nates the need to compute ^4[(sn)2]. 

We can assess the accuracy of Eq. (5.7) in computing the domain-averaged numeri

cal diffusion coefficient by computing advection of a passive tracer under the influence 

of a fixed physical diffusion coefficient, fcPhyS- If we assume that the presence of phys

ical diffusion leads to reduction of tracer variance in Eq. (5.4) approximately of the 

form —2/cphySVdsn • Vdsn, then Eq. (5.7) would give a net diffusion coefficient of 

k -k +k, E[(*")2-(*"+1)W (58) 
net ~ *num + *phys ~ 2A£ J2 Vd5™ • W A V ' l j 

Evaluation of the right-hand side of Eq. (5.8) will then give the net sum of the domain-

integrated numerical and physical diffusion. Therefore, if the physical diffusion is 

large, then knet should approximate the physical diffusion. 

5.2 Numerical simulations 

5.2.1 Idealized simulations 

We initialize a rectangular domain of length L = 100 km and width W = 100 km 

with a Gaussian passive tracer field of the form 

s(x, y, t = 0) = exp 
(x - x0)2 (y - yo)2 

2R2 2R2 (5.9) 

where Xo = 20 km, y0 = 20 km, and R = 5 km. The passive tracer is advected in 

the absence of physical diffusion on grids (A) AZ = 2000 m, (B) AZ = 1000 m, and 

(C) AZ = 500 m using first-order upwind and the same TVD scheme that is used for 

salinity simulations in Chapter 2. The tracer field is advected in a steady velocity 

field with a magnitude of Uo = 1 m s _ 1 and a Courant number C = 0.1, so that the 

time step size is given by At = CAl/uo, and the tracer field is advected for a total 

time of 50,000 s. 

We compute knet using the domain-averaged formulation in Eq. (5.7). Since grid 
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(C) should have the lowest numerical diffusion, we use this grid to compute two 

more cases with increasing amounts of physical diffusion to test the ability of the 

domain-averaged formulation to infer this physical diffusion, namely runs (D) A)phys = 

50 m2 s _ 1 and (E) /cphyS = 200 m2 s_ 1 . These results are summarized in Table 5.1. 

Fig. 5.1 depicts the result of advecting the initial tracer field with different amounts 

of physical diffusion (runs C - E). In the absence of physical diffusion, the numerical 

diffusion coefficients for first-order upwind and second-order schemes are derived in 

Chapter 4. For the case that 0 = 0, numerical diffusion exists only in the streamwise 

direction, while the lateral and cross-diffusion terms are zero. Even though physical 

diffusion acts equally in all directions, the net diffusion is anisotropic because numer

ical diffusion is in the streamwise direction. As expected, first-order upwinding leads 

to higher diffusion and stronger spreading in the streamwise direction compared to 

the TVD scheme. Time series of knet for cases C-E are depicted in Fig. 5.2. For 

all cases knet is large upon initiation because the tracer field experiences dominant 

numerical diffusion at the start. After a few time steps, the smoothing of fronts lead 

to a decrease in the amount of numerical diffusion the tracer field experiences, and 

knet decays until it reaches a quasi steady-state. 

Upon reaching quasi-equilibrium, kaet is used to assess the numerical diffusion 

(Table 5.1). These results show that the numerical diffusion for the TVD scheme is 

consistently lower than that for first-order upwinding. Similar amounts of numerical 

diffusion are predicted for runs C - E , indicating knet accurately infers the added 

physical diffusion. The numerical diffusion coefficient scales with grid spacing for the 

high- and low- order schemes, i.e, for first-order upwinding knum/uoAl ~ 0.13 and for 

the TVD scheme knum/uoAl ~ 0.01. The coefficient of proportionality is one order of 

magnitude smaller for the TVD scheme compared to first-order upwinding, which is 

consistent with results in Chapter 4. The analytical numerical diffusion coefficients 

when 0 = 0 for k^/uoAl using first-order upwind and the second-order scheme with 

ip = 1.5 are respectively 0.2 and 0.025. knum/uoAl assumes isotropy which results in 

underprediction of the numerical diffusion coefficients. In reality numerical diffusion 

is anisotropic for the case that 0 = 0, and numerical diffusion exists only in the 

streamwise direction. 
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TVD Upwind 

Figure 5.1: Result of advecting a Gaussian passive tracer after 50,000 s with the 
TVD scheme (left column) and first-order upwind (right column). The three rows 
represent results with kphys = 0 m2 s _ 1 (run C), kphys = 50 m2 s _ 1 (run D) and 
kphys = 200 m2 s _ 1 (run E). The grid cell size is represented by a small triangle on the 
top left hand corner of the plot. Legend: Numerical solution (black), Exact solution 
(red). 
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Figure 5.2: Comparison of A;net with different amounts of physical diffusion. Legend: 
first-order upwind ( ), TVD (—), fcphys = 0 m2 s _ 1 (black), rcphys = 50 m2 s _ 1 (red), 
kphys = 200 m2 s"1 (blue). 

Fig. 5.3 shows the sensitivity of knet and ^ to grid resolution. For first-order 

upwinding, numerical diffusion grows to first-order in the grid spacing, and both 

knet and fcxx converges with first-order accuracy. Eq. (4.46) shows analytical / ^ 

is proportional to AZ. On one-dimensional grids the TVD scheme has numerical 

diffusion that is second-order accurate. The TVD scheme is nonlinear in the advected 

quantity, and hence on unstructured grids this method obtains knet that grows to 1.5-

order in grid spacing. For comparison, the second-order scheme with constant ip has 

fcxx which converges with first-order accuracy as shown in Eq. (4.74). 

Following the method outlined in Burchard and Rennau (2007), we obtain local 

numerical diffusion coefficients from the same set of numerical simulations, by com

puting A;numiiocai with Eq. (5.6). The statistical properties (mean, max, min, std) of 

&num,iocai are summarized in Table 5.2 and compared to the domain-averaged formu

lation. Zcnum,iocai is representative of the independent analysis since the tracer moves 

from type A to type B cells (following the notation in Chapter 4) as it is advected 

in the domain, and the numerical diffusion coefficients oscillate widely for the two 

types of cells. This leads to high standard deviation in the statistical properties for 
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Figure 5.3: Sensitivity of knet to grid resolution. Legend: knet (black), fcxx (red), 
First-order upwind (x, ), Second-order (o,—). 

Table 5.1: Channel flow numerical simulations with the addition of physical diffusion, 
fcxx derived in Chapter 4 for the case that 0 = 0 is shown for comparison. kyy = kxy = 0 
when 0 = 0. Diffusion coefficients are in m2 s - 1 . L,™ = A;npt. — kn v phys • 

Case 

A 

B 

C 

D 

E 

Ax (m) 

2000 

1000 

500 

500 

500 

"-phys 

0 

0 

0 

50 

200 

"-net 

Upwind 

277 

135 

67 

117 

267 

TVD 

20 

8 

4 

54 

204 

h "riurr 

Upwind 

277 

135 

67 

67 

67 

i 

TVD 

16 

8 

4 

4 

4 

krmm/uoAl 

Upwind TVD 

0.13 0.010 

0.13 0.008 

0.13 0.008 

0.13 0.008 

0.13 0.008 

k^/uoAl 

Upwind ip = 1.5 

0.2 0.025 

0.2 0.025 

0.2 0.025 

-

-
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Table 5.2: Comparisons of knet and A;num)iocai from channel flow numerical simulations. 
Diffusion coefficients are in m2 s_ 1 . 

Run 

A 

B 

C 

Ax (m) 

2000 

1000 

500 

"-net 

277 

135 

67 

Upwind 

"-num, local 

mean max min 

255 4205 0 

134 1998 0 

67 967 0 

std 

363 

140 

58 

^net 

23 

8 

4 

mean 

47 

8 

2 

TVD 

"'Qum 

max 

4342 

814 

849 

local 

min 

-4557 

-794 

-988 

std 

491 

165 

71 

fcnum,iocai- On the other hand, the combined analysis which employs a recurrence 

relation to derive one equation takes into account the effects of one type of cell on 

the other and computes numerical diffusion in an averaged sense along the path the 

tracer field is advected. This is analogous to the domain-averaged formulation knet 

which provides a better estimate of numerical diffusion than &num,iocai computed at 

each grid cell. 

5.2.2 Numerical diffusion in San Francisco Bay 

We employ the unstructured-grid SUNTANS model to perform three-dimensional 

simulations of flow in San Francisco Bay. The setup and implementation of the 

SUNTANS model applied to San Francisco Bay, and details of the calibration and 

validation are presented in Chapter 2. To assess the effects of tidal dispersion and 

time scales on numerical diffusion, we analyze the dynamics of a passive tracer field 

advected with first-order upwind and the TVD scheme. 

The domain is initialized with a passive tracer field at three different locations 

throughout the Bay, namely (A) Golden Gate, (B) Carquinez Strait, (C) South Bay 

Shoals (see Fig. 2.1). The passive tracer has radius R = 1 km and is constant over the 

depth. The tracer field is initialized on 4 February 2005 at the beginning of the flood 
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tide (recall that the model is calibrated during the period 1 January to 14 February 

2005), and the resulting tracer field is analyzed over the subsequent three days. 

5.3 Tidal dispersion 

The flow dynamics at the three sites in San Francisco Bay are characterized by varying 

degrees of horizontal and vertical tidal dispersion. The tidal flow has a large influence 

on dispersion at regions with abrupt changes in bathymetry, through mechanisms such 

as shear dispersion, turbulence, tidal pumping and trapping and Lagrangian motions 

(Geyer and Signell 1992). Strong tidal currents are generated at the Golden Gate 

where strong currents lead to tidal pumping that results from a jet-sink asymmetry 

at the inlet (Stommel and Farmer 1952). This tidal pumping leads to strong tidal 

dispersion which is enhanced by the formation of transient eddies and flow separation 

(Signell and Geyer 2007). At Carquinez Strait, the longitudinal density gradient 

resulting from the salt wedge drives gravitational circulation in which flow is advected 

landward along the bottom and seaward at the surface, resulting in longitudinal 

dispersion of the passive tracer released at this location (Hansen and Rattray 1965; 

Monismith et al. 2002). The baroclinic circulation also induces transverse residual 

circulation resulting in lateral shear (Smith and Cheng 1987; Nunes and Simpson 

1985). At South Bay Shoals where bathymetric variability is weak, tidal dispersion 

is negligible relative to that at Golden Gate and Carquinez Strait. 

Figs. 5.4 - 5.9 show the evolution of the depth-averaged passive tracer field over 

the first 21 hours at the three sites, and compares the results of the TVD scheme 

to those with first-order upwinding. We also quantify the relative effects of tidal 

dispersion on the numerical diffusion in each of the three locations by computing knei 

using Eq. (5.8). The mean knet for the three-day period are tabulated in Table 5.3. 

Time series of knei at each location, and comparisons of the TVD scheme to first-order 

upwinding are shown in Fig. 5.10. Since physical diffusion of the tracer field is ignored 

in these simulations, knet should provide a direct measure of the numerical diffusion 

for each scheme. 

The strong tidal dispersion at Golden Gate (Fig. 5.4) and Carquinez Strait (Fig. 5.6) 
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lead to substantial stirring of the tracer field that produces marked differences between 

first-order upwind and the TVD scheme for the first 12 hours. At both locations, the 

TVD scheme maintains the initial sharp fronts, while first-order upwinding has a ten

dency to smooth the fronts. However, after roughly 12 hours (Figs. 5.5 and 5.7) the 

differences between the high- and low- order schemes at both locations are reduced. 

This is shown by the time series of A;net in Fig. 5.10. Because the differences between 

first-order upwind and the TVD scheme are large only initially, the averaged values 

are roughly equal as shown in Table 5.3. 

In the South Bay Shoals (Figs. 5.8 and 5.9), where tidal dispersion is weak, the 

differences between the high- and low- order schemes remain high throughout the 

period of simulation. The low velocities in the shoals lead to the tracer field remaining 

at roughly the initial location. The TVD scheme maintains the sharp fronts of the 

tracer, while first-order upwinding smooths the fronts by numerical diffusion. knet 

shows a marked difference between the high- and low-order schemes for the period of 

simulation (Fig. 5.10), and is approximately a factor of three times smaller for the 

TVD scheme compared to first-order upwinding. As a consequence of the weak tidal 

dispersion, numerical diffusion is the main contributor to knet in the shoals. 

These results show that fcnet is lower for the TVD scheme only in regions where 

tidal dispersion is relatively low. In regions of high tidal dispersion, strong strirring 

of the tracer field leads to grid-scale variability that produces equivalent A;net for both 

first-order upwinding and the TVD scheme after an initial smoothing period. 

5.4 Diffusion coefficients evaluated over different 

t ime scales 

We obtain similar rcnet for the passive tracer field at Carquinez Straits with both first-

order upwind and the TVD scheme after the initial smoothing period (Fig. 5.6), while 

a sensitivity analysis of salinity simulations at the location of Benicia in Carquinez 

Straits demonstrate a reduction in mean and RMS errors when employing the TVD 

scheme (Fig. 3.1). To investigate if the time scale over which the numerical diffusion is 
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TVD Upwind 

t = 3hr 

t = 6hr t = 6hr 

t = 12 hr 

Figure 5.4: Evolution of passive tracer field at Golden Gate from 0 to 12 hour in 
3 hour intervals. Left column is the TVD scheme and right column is first-order 
upwind. Note that the color axes change with time. 
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TVD Upwind 

Figure 5.5: Evolution of passive tracer field at Golden Gate from 15 to 21 hour in 
3 hour intervals. Left column is the TVD scheme and right column is first-order 
upwind. Note that the color axes change with time. 
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TVD Upwind 

l = 0hr t = Ohr 

t = Shr t = 6hr 

t=12hr t = 12 hr 

Figure 5.6: Evolution of passive tracer field at Carquinez Strait from 0 to 12 hour 
in 3 hour intervals. Left column is the TVD scheme, and right column is first-order 
upwind. Note that the color axes change with time. 
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TVD Upwind 

t=15hr t = 15 hr 

t=18hr 

Figure 5.7: Evolution of passive tracer field at Carquinez Strait from 15 to 21 hour 
in 3 hour intervals. Left column is the TVD scheme, and right column is first-order 
upwind. Note that the color axes change with time. 
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TVD Upwind 

t = 0 hr t = 0 hr 

l = 3hr 

t = 6hr 

t = 9hr 

t = 12hr 

Figure 5.8: Evolution of passive tracer field in South Bay from 0 to 12 hour in 3 hour 
intervals. Left column is the TVD scheme, and right column is first-order upwind. 
Note that the color axes change with time. 
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TVD Upwind 

t=15hr t = 15hr 

t = 21hr 

Figure 5.9: Evolution of passive tracer field in South Bay from 15 to 21 hour in 3 hour 
intervals. Left column is the TVD scheme, and right column is first-order upwind. 
Note that the color axes change with time. 
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Figure 5.10: Comparison of fcnet for the period of simulation at (a) Golden Gate (b) 
Carquinez Straits (c) South Bay Shoals. Legend: first-order upwind ( ), TVD (—). 



www.manaraa.com

CHAPTER 5. NUMERICAL DIFFUSION IN SAN FRANCISCO BAY 125 

computed might contribute to the performance of the advection schemes, we estimate 

the diffusion coefficient over short time scales and compare these to the long time 

scales results. 

An estimate of the short time scale diffusion is obtained by initializing a passive 

tracer field with Eq. (5.9) and Ro = 1 km at the same three locations in the Bay. rvnet 

is computed using Eq. (5.8) over the first hour, and the tracer field is reinitialized 

at the end of the first hour. Since the tracer field experiences little tidal dispersion 

initially, this method of computing knet over the first hour provides an estimate of 

the numerical diffusion with knet = knum. knet is smaller over the three-day period 

compared to values computed for the first hour of simulation, since over long time 

scales smoothing of fronts leads to a reduction of numerical diffusion, and hence results 

in smaller knei. For the case of scale-dependent dispersion, however, the growth of the 

size of the tracer causes it to sample a larger range of scales of turbulence, and the 

dispersion coefficient depends on the size of the tracer to the 4/3-power (Richardson 

1926; Batchelor 1969). 

As shown in Fig. 5.11, over short time scales the TVD scheme introduces a smaller 

amount of numerical diffusion compared to first-order upwinding at all three loca

tions. knet is computed for short time scale simulations and tabulated in Table 5.3. 

The values are approximately a factor of two smaller for the TVD scheme compared 

to first-order upwinding. This indicates that the implementation of a second order 

accurate, TVD scheme is crucial to accurately simulate the transport of a passive 

tracer field over short time scales. This effect is important particularly for periodic 

stratification in which numerical diffusion acts primarily over tidal time scales. For 

this reason the TVD scheme produces results that are more accurate than first-order 

upwinding for the salinity results described in Chapter 3. 

5.5 Summary 

A domain-averaged formulation provides an estimate for numerical diffusion without 

the need for analytical methods like the Hirt analysis in Chapter 4. The ability of the 

domain-averaged formulation to infer diffusion coefficients is verified with idealized 
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Figure 5.11: Comparison of fcnet with reinitialization at (a) Golden Gate (b) Carquinez 
Straits (c) South Bay Shoals. Legend: first-order upwind ( ), TVD (—). 
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Table 5.3: Mean knet (in m2 s_1) in San Francisco Bay for the re-initiailized simula
tions and those run over a three-day period. 

Location Re-initialized Three days 

Upwind TVD Upwind TVD 

Golden Gate 22.0 13.9 3.0 3.4 

Carquinez Strait 11.9 9.0 3.5 3.1 

South Bay Shoals 9.7 4.5 3.0 1.0 

simulations, and this formulation is applied to San Francisco Bay to assess the impacts 

of tidal dispersion and different time scales on numerical diffusion. 

In regions of high tidal dispersion, strong stirring of the tracer field leads to grid-

scale variability that produces equivalent knet for the first-order upwind and TVD 

schemes. knet is lower for the TVD scheme only in regions where tidal dispersion is 

relatively low. The importance of time scales on numerical diffusion is investigated 

by reinitializing the tracer field every hour and computing the diffusion coefficients 

after one hour of simulation. For short time scales, fcnet is consistently smaller for the 

TVD scheme compared to first-order upwinding, which verifies results in Chapter 3 

that demonstrate the effectiveness of the TVD scheme in producing salinity results 

that are more accurate than those obtained with first-order upwinding. 
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Chapter 6 

Potential climate change impacts 

on estuarine circulation and 

salinity intrusion 

6.1 Introduction 

In this chapter, we employ the three-dimensional unstructured-grid SUNTANS model 

to assess the implications of sea-level rise and hydrologic changes to the estuarine 

system. An increase in the rate of sea-level rise is one of the primary impacts of 

global climate change, which combined with changes to the local hydrology due to 

global warming is expected to modify salinity intrusion and estuarine circulation in 

North San Francisco Bay. 

6.2 Numerical Model 

We employ the three-dimensional, unstructured-grid SUNTANS model (Fringer et al. 

2006) to simulate the flow in San Francisco Bay. The model inputs include high-

resolution bathymetry from the NGDC database (Fig. 2.1) and an unstructured grid 

that enables refinement of the complex coastline (Fig. 2.2). The model is tidally 

128 
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forced at the open ocean boundary with the 8 major tidal constituents from ob

served water surface elevations at Point Reyes. Freshwater inflow estimates from the 

DAYFLOW program (CDWR 1986) are imposed as flow boundary conditions at the 

Delta boundary. The model is calibrated for the 45-day period 1 January - 15 Febru

ary 2005, using 32 processors on the Peter A. McCuen Environmental Computing 

Center at Stanford University, such that the simulations run roughly ten times faster 

than real time. The spring and neap tidal cycles and the mixed semi-diurnal and 

diurnal tidal ranges for surface elevations and currents are reproduced by the model. 

The salinity predictions are in good qualitative agreement with observation in terms 

of amplitude and phase, and the model is able to capture the periodic stratification of 

the estuary. Predicted X2 ranges from 67.3 km to 70.6 km in the calibration period, 

which compares well with the observed X2 value on 23 February 2005 of 68.5 km. We 

use these simulations as the baseline and study the effect of changes in mean sea level 

and freshwater inflows. Details of the implementation and validation are discussed in 

Chap. 2. 

6.3 Climate Change Scenarios 

Over the past century, mean sea level at Golden Gate has risen by 0.22 m (Flick 

2003) consistent with global average rates (Church et al. 2004). Based on global 

mean temperatures as projected by the CCSM3 global climate model under the A2 

greenhouse gas emissions scenario, 100-year projections of mean sea level at Golden 

Gate were produced by Cayan et al. (2008) using the method of Rahmstorf (2007). 

To study the impact of sea-level rise, we initialize the model with different mean 

sea-level heights based on values derived from the CCSM3-A2 global climate model. 

Four scenarios are studied, namely: 0.00 m (year 2000), 0.46 m (year 2050), 1.00 m 

(year 2081) and 1.39 m (year 2099). The tides are then forced relative to the different 

mean sea-level heights, and we assume that the tidal constituents remain constant 

with sea-level rise (Cayan et al. 2008; Knowles 2010). 

Climate change impacts on hydrology are difficult to assess due to uncertainties 

in the projections of temperature and precipitation (Dettinger 2005; Maurer and 
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Duffy 2005). However, it is likely that rising global temperatures will impact the 

Sacramento-San Joaquin watershed by reducing the snowpack, which would produce 

higher winter but reduced spring-summer flows (Miller et al. 2003; Dettinger et al. 

2004; Knowles and Cayan 2002; Knowles and Cayan 2004). Rather than impose 

predicted inflows, we impose constant-in-time average seasonal inflows from the es

timates of Knowles and Cayan (2004), namely: low inflow of 300 m 3 s _ 1 based on 

average summer conditions, a baseline average inflow of 800 m 3s _ 1 , and a high inflow 

of 2000 m 3 s _ 1 based on average winter conditions. 

Sea-level rise leads to an increase in the tidal prism of the Delta and flooding of 

Delta islands. The difficulties in modeling the inundation of low-lying Delta regions 

are circumvented by using a model with a false delta approximation (Figure 2.2). The 

"false delta" consists of two rectangles sized to obtain the correct tidal behavior of the 

Delta as seen by the eastern boundary of the SUNTANS domain, while eliminating the 

need to resolve the highly complex channels and tributaries that make up the Delta. 

Making the assumption of "hard shorelines", i.e. levees/dikes are built to ensure 

the shoreline perimeter does not increase with rising sea levels, and eliminating the 

vulnerability of levee failures, the potential threat of shoreline retreat that could lead 

to an increase in the tidal prism of the Bay is not considered in our scenarios. 

In summary, we perform a total of twelve simulations consisting of four different 

sea-level rise scenarios and three different freshwater inflow scenarios. All simula

tions are initialized with the same salinity field which is obtained from United States 

Geological Survey (USGS) synoptic observations collected on 11 Jan 2005. This 

data consist of vertical profiles of salinity at 1 m vertical resolution at 39 sampling 

locations along the longitudinal axis of San Francisco Bay. Interpolation to the three-

dimensional grid points is performed under the assumption of no lateral variability. 

The ocean salinity is assumed to be fixed at 33.5 psu for all scenarios. The modeled 

salinity field is nearly tidally-periodic after 15 days of spin-up time, and results are 

analyzed for the remaining 30 days. 
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Figure 6.1: Tidal and depth-averaged salinities from the Golden Gate along the 
longitudinal axis in North San Francisco Bay. Distances into the Bay are positive 
and those towards the ocean are negative. Legend: Freshwater inflows 2000 m 3 s _ 1 

(black), 800 n r V 1 (red), 300 m 3 s - 1 (blue), and sea-level rise 0 m (—) 0.46 m ( — ) , 
1.00 m (-•) and 1.39 m (•••). 

6.4 Salinity intrusion and estuarine circulation 

The climate change scenario simulations described in Section 6.3 are performed to 

investigate their influence on salinity intrusion and changes to the estuarine circulation 

in North San Francisco Bay. Fig. 6.1 shows depth-averaged salinity fields that are 

averaged over simulation day 32 along a longitudinal transect extending from the 

Pacific Ocean and through North San Francisco Bay to the eastern boundary of the 

domain (see Fig. 2.1). The results show that sea-level rise leads to higher salinities 

due to greater intrusion of salinity further upstream into North Bay, while increased 

inflows freshen the Bay and push the salinity field downstream. 

The interplay between rising sea levels and variable freshwater inflows is fur

ther illustrated with vertical profiles of tidally-averaged salinity along a transect in 

Carquinez Strait (black line in Fig. 2.1) for the different scenarios. The changes 
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in estuarine circulation depicted in Fig. 6.2 are investigated qualitatively from the 

cross-sectionally and tidally averaged salt transport equation (Fischer et al. 1979): 

.ds d . d 
dx 

(6.1) 

where A is the cross-sectional area, s is the salinity, Q is the river flow, K is the 

longitudinal dispersion coefficient, and x is measured upstream from the mouth of 

the estuary. 

By assuming a balance between the longitudinal pressure gradient arising from 

the longitudinal salinity gradient and turbulent shear stresses arising primarily from 

bottom-generated turbulence, Hansen and Rattray (1965) demonstrate that the mag

nitude of the baroclinically-induced gravitational circulation is proportional to the 

longitudinal salinity gradient. A velocity scale for the exchange flow is represented 

with 

UGC ~ dx , (6.2) 
vt 

where /? is the coefficient of salt expansion, H is the water depth, and vt is the vertical 

eddy diffusivity. At steady state, the salt balance in Eq. (6.1) is given by 

-js = Kx-. (6.3) 

The longitudinal dispersion coefficient K is obtained from the balance between the 

horizontal advection of the salinity gradient and vertical diffusion of the vertically 

varying salinity perturbation, and is given by 

(Pg)2m2H8 , , 
K ~ KHy> KdxJ . 6.4) 

Increased inflows cause the compression of isohalines, which is observed in Fig. 6.2. 

From the steady state salt balance, higher inflows result in a stronger horizontal 

salinity gradient. The velocity scale in Eq. (6.2) is proportional to the longitudinal 

salinity gradient, indicating a higher horizontal salinity gradient results in stronger 

gravitational circulation. From Eq. (6.4), an increased horizontal salinity gradient 
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Figure 6.2: Vertical profiles of tidally-averaged salinity along a transect in Carquinez 
Strait (black line in Fig. 2.1) for 2000 m V 1 , 800 n r V 1 and 300 m V 1 freshwater 
inflows, and (a) 0 m (b) 0.46 m (c) 1.00 m (d) 1.39 m sea-level rise. 
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corresponds to higher longitudinal dispersion. 

Rising sea levels result in a stronger baroclinic pressure gradient which is pro

portional to the water depth. The longitudinal pressure gradient arises from the 

longitudinal salinity gradient, indicating an increase in the strength of the gravita

tional circulation (Eq. 6.2) and a larger longitudinal dispersion coefficient (Eq. 6.4). 

Sea-level rise reduces the impact of bottom-generated turbulence, which leads to less 

vertical mixing, both of which results in stronger gravitational circulation (Eq. 6.2) 

and larger longitudinal dispersion (Eq. 6.4). 

6.5 Quantifying salinity intrusion due to sea-level 

rise 

An indicator for effective management of estuarine biological resources as well as to 

set standards for managing freshwater inflows in San Francisco Bay is proposed by 

the Environmental Protection Agency (EPA) (Schubel 1993; Kimmerer and Schubel 

1994). The isohaline position X2, which is defined as the distance (in km) from the 

Golden Gate Bridge measured along the longitudinal axis to the location where the 

bottom salinity is 2 psu, is selected for this purpose. X2 is correlated with a number 

of variables, including inflows, estuarine habitats and abundance of organisms. In the -

present analysis we employ X2 as a measure of salinity intrusion into the Bay. 

A method of estimating X2 from salinity observation data is outlined in Jassby 

et al. (1995). Predictions of X2 can be computed from a time-series regression rela

tionship (Jassby et al. 1995) or obtained from salinity predictions using hydrodynamic 

modeling (MacWilliams et al. 2005). The ability of regression relationships to predict 

X2 is limited for high and low flow conditions, while hydrodynamic models obtain 

X2 which match observed X2 over a range of inflows (MacWilliams et al. 2005). The 

ability of numerical models to accurately compute X2 under current conditions sug

gest that it is appropriate to use hydrodynamic models to predict X2 for the climate 

change scenario simulations. Salinity predictions obtained along the thalweg in North 

San Francisco Bay are averaged over day 32, and X2 is computed by interpolation to 
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find the location along this transect at which bottom salinity is equal to 2 psu. 

The salinity intrusion length scale can be derived from classical estuarine theory 

under the assumption of constant vertical mixing coefficients (Hansen and Rattray 

1965). The expression for the longitudinal dispersion coefficient K given in Eq. (6.4) 

is substituted into the steady state salt balance (Eq. 6.3) to obtain 

Qc-K
ds -W9?H* (ds\ 

A dx v3 \dx J * = ̂  = ^ M ^ ) • (6.5) 

Rearranging Eq. (6.5), the salinity intrusion length scale becomes 

(Way/3(Pgs)2/3H3 

X2 Q ^ t ' ( 6 - 6 ) 

where W is the width of the estuary, and a = 5.4 x 10~5 is the constant of propor

tionality. From the scaling in Eq. (6.6), X2 is shown to be proportional to Q to the 

— 1/3 power. Increased inflows result in a stronger horizontal salinity gradient, as seen 

from the steady state salt balance in Eq. (6.3). The balance between the divergence 

of the shear stress and the baroclinic pressure gradient arising from the longitudinal 

salinity gradient leads to a velocity scale for the exchange flow given in Eq. (6.2) from 

which stronger gravitational circulation is obtained with higher horizontal salinity 

gradient. The increase in the strength of the gravitational circulation acts to create 

higher vertical stratification, leading to the nonlinear feedback between vertical mix

ing and stratification, hence resulting in decreased sensitivity of X2 to variability of 

inflows. Interestingly, field experiments by Monismith et al. (2002) in San Francisco 

Bay found a similar weak dependence on inflows, such that X2 is proportional to Q to 

the —1/7 power. Sea-level rise decreases the impact of bottom-generated turbulence, 

which leads to less vertical mixing. The scaling relationship in Eq. (6.6) demonstrate 

an increase in X2 when the vertical eddy diffusivity decreases. 

The dependence of X2 on Q for different sea-level rise scenarios is shown in Fig. 6.3. 

Applying regression analysis to the data, the coefficients for the least-squares fit of 

the form X2 = bQn are tabulated in Table 6.1. Rising sea levels lead to greater 

dependence of X2 on Q since the exponent n in Qn increases in absolute value. An 
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Figure 6.3: Dependence of salinity intrusion length scale X2 on inflows. Legend: 
Sea-level rise scenarios 0.00 m (—, x) , 0.46 m ( , o), 1.00 m (• • •, *), 1.39 m 

increase in the water depth leads to a weaker dependence on dS/dx because in the 

limit of deep water dS/dx = 0. This is consistent with the results of Bowen (2002), 

who found X2 has a Q _ 1 dependence and is independent of dS/dx, in the limit of 

gravitational circulation having no effect on salt transport. Also, overlaid on Fig. 6.3 

is the result X2 = 167<5~1,/7 obtained from field experiments in San Francisco Bay by 

Monismith et al. (2002). Even though our exponent values are consistently higher, 

they are within the range of scatter of the data used by Monismith et al. (2002). 

Our results show for the scenario with no sea-level rise, X2 ~ Q~1//8, with a 95.7% 

confidence level. 

The change in X2 with sea-level rise for different inflow scenarios is shown in 

Fig. 6.4. A regression analysis is performed of the form X2 = c(H0 + AH)m, where 

Ho = 12.4 m is the average depth over the transect and AH is the sea-level rise. The 

coefficients for the least-squares fit are tabulated in Table 6.2. Following the salinity 

intrusion length scaling in Eq. (6.6), X2 is proportional to H to the third-power. 

However, since ut ~ H, the dependence of X2 on H is reduced to X2 ~ H2. Our 

scenario simulations indicate that m is within the range 0.5 and 1.3, with a 99.9% 
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Table 6.1: Least-squares fit of the form X2 = bQn for sea-level rise scenarios in 
Fig. 6.3. 

Sea-level rise 
(m) 
0.00 
0.46 
1.00 
1.39 

b 
(xlO5) 

1.57 
1.74 
2.04 
2.24 

n 

-0.122 
-0.133 
-0.151 
-0.162 

Confidence level 
(%) 
95.7 
92.3 
90.8 
88.4 

15 

10-

1f * 

* " 3 -1 
< 300 m3s ' 

5-
800 m3s 1 __ ,-^3^—-

^^J^_^- i~"~~"l>000 m V 

Vf^^—- ' ' 
0 0 5 1 1.5 

Sea-level rise (m) 

Figure 6.4: Dependence of salinity intrusion length scale X2 on sea-level rise. Legend: 
Freshwater inflows 2000 n r V 1 (—, x) , 800 n r V 1 ( , o), and 300 m V 1 (• • •, *). 

confidence level. 

Under low-flow conditions, the exponent m is the largest, since sea-level rise has a 

greater effect on salinity intrusion due to weaker vertical stratification in the presence 

of low inflows. For baseline and high inflows, the exponent m is reduced approximately 

by a factor of 2, with the smallest m obtained for high-flow conditions. For high-flow 

conditions, the exponent is the smallest. Stronger inflows increase the strength of 

gravitational circulation, which acts to create higher vertical stratification leading 

to the nonlinear feedback between vertical mixing and stratification. The effect of 

sea-level rise on vertical stratification and consequently salinity intrusion is reduced, 

owing to the suppression of mixing by stratification. 
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Table 6.2: Least-squares fit of the form X2 = C(HQ + AH)m for the inflow scenarios 
in Fig. 6.4. 

Inflows 
(m3s_1) 
300 
800 
2000 

c 
(xlO4) 
0.290 
1.54 
1.42 

m 

1.31 
0.595 
0.588 

Confidence level 
(%) 
99.9 
99.7 
99.6 

r - ~ 

64 km 

_ _ - -o- " " ' 

74 km 

81 km 

-

_ - - o 

* 

0.5 1.0 1.5 
Sea-level rise (m) 

Figure 6.5: Inflows required to maintain X2 standards for the sea-level rise scenarios. 
Legend: Port Chicago X2 = 64 km (—, o), Chipps Island X2 = 74 km ( , o), and 
Collinsville X2 = 81 km (• • •, *). 

6.6 Estimating the effect of sea-level rise on X2 

Direct measurements of inflows in San Francisco Bay cannot be made because of 

the complex geometry of the channels, which results in a high degree of uncertainty 

particularly at low flows. Therefore, X2 is used as a substitute for regulating inflows 

to ensure that sufficient fresh water is available to flush the Bay. A set of standards for 

X2 was proposed in the 1994 Bay-Delta Accord, which explicitly states X2 maintained 

at Port Chicago, Chipps Island and Collinsville are respectively 64, 74 and 81 km. 

The steady-state inflows required to maintain X2 at 64, 74 and 81 km are respectively 

826 n r V 1 , 352 m 3 / s _ 1 and 194 m3s"1 (Sullivan and Richard 1994). 
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Fig. 6.5 shows the amount of freshwater inflows required to maintain X2 at the 

three locations for the different sea-level rise scenarios. This was determined from 

Fig. 6.3 where for each sea-level rise scenario the amount of inflows required to main

tain X2 at 64, 74 and 81 km are interpolated from the plot. Note that Fig. 6.5 is 

a log-log plot and spacing between small values are amplified. All three locations 

show with sea-level rise increased inflows is required to maintain X2 at its current 

location. Sea-level rise decreases bottom-generated turbulence, which leads to less 

vertical mixing and results in stronger gravitational circulation. This causes higher 

vertical stratification and greater salinity intrusion, hence requiring greater inflows 

to maintain X2 at its current location. The largest increase in inflows from current 

conditions is required to maintain X2 at the downstream location at Port Chicago, 

since this is the closest location amongst the three to the Pacific Ocean and most af

fected by sea-level rise. The increase in inflows required to maintain X2 at its current 

location due to a 1.39 m sea-level rise at Port Chicago, Chipps Island and Collinsville 

are respectively 711 m3 s_1 , 456 m3 s _ 1 and 308 m3 s_ 1 . 

6.7 Summary 

The three-dimensional unstructured-grid SUNTANS model is employed to assess the 

implications of sea-level rise and hydrologic changes on salinity intrusion and estuar

ine circulation in North San Francisco Bay. Climate change scenario simulations with 

sea-level rise projections derived from the CCSM3-A2 global climate model are per

formed under hydrologic conditions of low, baseline and high freshwater inflows, and 

their effects on the salinity intrusion length are quantified. Rising sea levels reduce 

the impact of bottom-generated turbulence causing less vertical mixing. This creates 

stronger gravitational circulation and higher vertical stratification, resulting in en

hanced salinity intrusion. Under low-flow conditions, salinity intrusion is the largest, 

since sea-level rise has a greater impact due to weaker vertical stratification. Strong 

flows increase the strength of the gravitational circulation, resulting in higher verti

cal stratification, which leads to the nonlinear feedback between vertical mixing and 

stratification. The effect of sea-level rise on vertical stratification and consequently 
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salinity intrusion is reduced owing to the suppression of mixing by stratification. With 

sea-level rise increased inflows are required to maintain current X2 standards. The 

least increase in inflows is required to maintain X2 at the downstream location at 

Port Chicago. 
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Chapter 7 

Conclusion 

7.1 San Francisco Bay numerical model 

Three-dimensional simulations of San Francisco Bay are performed with the unstructured-

grid SUNTANS model. A TVD scalar transport scheme is included in the model and 

modified to work for flows with extensive wetting and drying. The model inputs in

clude high resolution bathymetry from the NGDC database and an unstructured grid 

that enables refinement of the complex coastline. The model is tidally forced with 

water surface elevations at the open ocean boundary. Freshwater inflow estimates 

from the DAYFLOW program are imposed as flow boundary conditions at the Delta 

boundary. A 45-day three-dimensional simulation runs roughly ten times faster than 

real time. The bottom roughness is adjusted to reproduce the observed sea-surface 

heights and currents with the model. With no further tuning, the model is validated 

with salinity observations in North San Francisco Bay. 

The model-predicted surface elevations and depth-averaged currents compare well 

with observations at most locations in the Bay. The spring and neap tidal cycles, 

and the mixed semi-diurnal and diurnal tidal ranges for surface elevations and depth-

averaged currents are reproduced by the model. However, predicted surface elevations 

show errors at upstream locations at Mare Island and Port Chicago, which arise 

largely due to the false delta approximation. As the focus of our work is on salinity 

simulations at Benicia and Point San Pablo, these errors upstream have little effect. 
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The depth-averaged currents demonstrate small errors in amplitudes and phases 

at the Richmond and Oakland ADPs. Comparisons of predicted velocity profiles 

with observations also show the presence of errors at these locations. These errors 

are likely a result of performing advection of momemtum using ELM with a low-

order scheme that has linear interpolation. The model realistically predicts the tidal 

time scale variability in salinity. The salinity predictions also capture the periodic 

stratification of the estuary by obtaining with a high degree of accuracy the surface 

and bottom salinity at Point San Pablo (PSP) and Benicia (BEN). This indicates the 

MY2.5 turbulence closure scheme represents the effects of stratification on turbulence 

reasonably well for North San Francisco Bay. 

7.2 Sensitivity analysis of salinity simulations 

A sensitivity study is performed to determine the effects of grid resolution, the tur

bulence model, and the scalar transport scheme on salinity simulations in North San 

Francisco Bay. Comparisons of salinity predictions with observations are made with 

three levels of grid refinement, and simulations are performed on each mesh with four 

different scenarios to evaluate the relative effects of the scalar transport scheme and 

the turbulence model. 

The grid resolution study indicates that model convergence is highly sensitive to 

the choice of the advection scheme and the turbulence model. The best convergence 

rate in space is achieved when the TVD scheme is employed for salt transport and 

the turbulence model is employed. This accuracy degrades without the turbulence 

model due to the lack of feedback between vertical mixing and stratification. The 

result is an increase in error by one order of magnitude and a smaller convergence 

rate. Use of first-order upwinding further increases the errors roughly by a factor of 

two. Despite an expected first-order rate of convergence, these errors do not decrease 

when the mesh is refined. The impact of the turbulence model on the errors is also 

negligible when first-order upwinding is used. 

Lack of convergence and large errors when first-order upwinding is used result 

from horizontal numerical diffusion that leads to a diffuse salt wedge and decreased 
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baroclinic circulation. The errors are much more sensitive to mesh refinement and the 

turbulence model when the TVD scheme is used because of the increased horizontal 

salinity gradient. This ensures that nonlinear feedback between vertical mixing and 

stratification can take place when the turbulence model is employed. A diffuse salt 

wedge prevents the formation of sufficient vertical stratification that would damp the 

vertical mixing and lead to further salinity intrusion. 

A salt-flux analysis shows that, when first-order upwinding is used, the salt flux 

does not change when the grid is refined or when the turbulence model is employed. 

Horizontal salinity gradients are so weak that the tidal flux of salt is larger than the 

steady exchange flux. This is in contrast to the results of using the TVD scheme, 

which shows that the salt fluxes are smaller on the coarse grid than on the fine grid. 

Use of the TVD scheme produces a compressed salinity front that resolves more of the 

baroclinic circulation. This has the effect of producing a larger tidal flux to balance 

the river flux without the turbulence model. On the coarse grid, lack of the turbulence 

model does not change the tidal flux, but instead the reduction of the river flux is 

balanced by an equal reduction in the exchange flux. 

7.3 Numerical scalar diffusion on unstructured grids 

The quantification of numerical diffusion from scalar transport is employed to assess 

the performance of first-order upwind and second-order scalar advection schemes on 

unstructured grids. The quantification of numerical diffusion resulting from scalar 

transport on unstructured grids is obtained using an analytical approach by extending 

the Hirt analysis (Hirt 1968) on Cartesian grids to unstructured grids. We assume 

uniform flow on a grid composed of equilateral triangles in the derivation of analytical 

numerical diffusion coefficients. 

We introduce two methods, termed the independent analysis and the combined 

analysis to compute the modified form of the advection equation. The independent 

analysis separately derives the modified equations for the two types of cells, and this 

method leads to an overprediction of numerical diffusion coefficients. The combined 

analysis employs a recurrence relation to derive the equation for one cell, which is 
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substituted into the Taylor-series expansion of the other type of cell. Holleman et al. 

(2011) shows that the combined analysis obtains the correct numerical diffusion co

efficients for first-order upwinding, and we extend this method to derive diffusion 

coefficients for the second-order scheme. The second-order scheme is based on the 

Lax-Wendroff scheme on Cartesian grids which stabilizes central differencing but in

troduces dispersion. 

The numerical diffusion coefficients are verified with idealized simulations using 

the method of spatial moments analysis, and the coefficients are found to be one order 

of magnitude smaller for first-order upwinding than the second-order scheme. As the 

method of spatial moments analysis cannot be employed to compute numerical dis

persion coefficients from idealized simulations, the dispersion coefficients are verified 

with a pseudospectral method. The diffusion and dispersion coefficients are found to 

be comparable on unstructured grids and two-dimensional Cartesian grids, and the 

coefficients are identical when one of the edges is aligned with the flow. As Cartesian 

grids require a larger ip for stability, setting the minimum ip leads to larger diffusion 

coefficients on Cartesian grids compared to unstructured grids. 

A stability analysis is performed for first-order upwind and the second-order 

scheme on unstructured grids, and conditions for stability are compared to those 

on two-dimensional Cartesian grids. For first-order upwinding, the most restrictive 

Courant number on unstructured grids occurs when 9 = TT/6 which requires that 

0 < Co < \ /3 /2 ~ 0.87. In comparison, the stability condition is stricter on Carte

sian grids, and the most restrictive Courant number occurs when 9 = 7r/4, which 

requires that 0 < C0 < l / \ / 2 ~ 0.71. The second-order scheme is stable on un

structured grids with ip > 1.5 and 0 < C0 < 2/ \ /6 ~ 0.82 for all 9. In comparison, 

on Cartesian grids the second-order scheme has stricter conditions for stability with 

ip > 2 and 0 < C0 < 1/^2 « 0.71 for all 9. 

An accuracy analysis shows that first-order upwinding is first-order accurate in 

time and space while the second-order scheme is second-order accurate in time and 

space. Although the truncation errors of the modified equation are formally first-

order for the second-order scheme, the truncation errors are small and the method is 

effectively second-order accurate in time and space as shown by the accuracy analysis. 
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7.4 Numerical diffusion in San Francisco Bay 

A domain-averaged formulation based on the work of Burchard and Rennau (2007) 

provides an estimate for numerical diffusion without the need to analytically derive it, 

allowing for a computationally efficient method to compute diffusion coefficients un

der general flow and triangulation conditions. The net sum of the domain-integrated 

numerical and physical diffusion is referred to as rvnet- knet for three cases with increas

ing amounts of physical diffusion are computed using first-order upwinding and the 

TVD scheme, and the ability of the domain-averaged formulation to infer this phys

ical diffusion is demonstrated. A grid resolution study of numerical diffusion shows 

that a higher convergence rate in space is achieved with the TVD scheme compared 

to first-order upwinding. 

The performance of first-order upwind and the TVD scheme are assessed to de

termine the effects of tidal dispersion and time scales on numerical diffusion in San 

Francisco Bay. The three-dimensional, unstructured grid SUNTANS model applied 

to San Francisco Bay is employed to simulate flow in the Bay, and a passive tracer 

field is introduced at different locations in the Bay. knet is computed to quantify 

numerical diffusion resulting from scalar transport on unstructured grids. 

In regions with strong tidal dispersion, knet values are similar for the high- and 

low-order schemes after an initial smoothing period, due to strong stirring of the 

tracer field which leads to grid-scale variability. knet is lower for the TVD scheme 

only in regions where tidal dispersion is relatively low. The importance of time scales 

on numerical diffusion is investigated by reinitializing the tracer field every hour and 

computing the diffusion coefficient after one hour of simulation. For short time scales, 

knet is consistently smaller for the TVD scheme compared to first-order upwinding. 

7.5 Potential climate change impacts on estuarine 

circulation and salinity intrusion 

The three-dimensional unstructured-grid SUNTANS model is employed to assess the 

implications of sea-level rise and hydrologic changes on salinity intrusion and estuarine 
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circulation in North San Francisco Bay. Climate change scenario simulations with sea-

level rise projections derived from the CCSM3-A2 global climate model are performed 

under hydrologic conditions of low, baseline and high freshwater inflows, and their 

effects on salinity intrusion and salt flux are quantified. 

Sea-level rise reduces the impact of bottom-generated turbulence causing less ver

tical mixing, which increases the strength of the gravitational circulation. This leads 

to higher vertical stratification and enhanced salinity intrusion. Under low-flow con

ditions, salinity intrusion is the largest, since sea-level rise has a greater impact due to 

weaker vertical stratification. Strong flows result in stronger gravitational circulation 

that creates higher vertical stratification leading to the nonlinear feedback between 

vertical mixing and stratification. The effect of sea-level rise on vertical stratification 

and consequently salinity intrusion is reduced owing to the suppression of mixing by 

stratification. 

Policy decisions are guided by the location of X2 in San Francisco Bay. As sea-

level rises and with climate-induced alterations to inflows into the Bay, the location 

of X2 is likely to shift, indicating changes to estuarine conditions and resources. X2 

is used as a substitute for regulating inflows to ensure that sufficient freshwater is 

available to flush the Bay, and a set of standards was proposed to maintain X2 at 

Port Chicago, Chipps Islands and Collinsville. At all three locations increased inflows 

are required to maintain X2 at its current location with sea-level rise. The largest 

increase in inflows is required to maintain X2 at the downstream location at Port 

Chicago, since this is the closest location amongst the three to the Pacific Ocean. 

7.6 Recommendations 

Even though our calibration and validation runs show predicted sea-surface heights, 

currents and salinity match well with observations, improvements to the three-dimensional 

SUNTANS model of San Francisco Bay can be made by using a better false delta and 

including the effects of wind and all freshwater sources, i.e., small rivers and creeks in 

the southern end of South Bay. The sensitivity analysis in Chapter 3 demonstrates 

the importance of horizontal grid resolution in salinity simulations, with the mean 
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and RMS errors decreasing with near second-order accuracy as the grid is refined. 

Hence our model could be improved by providing greater horizontal grid resolution. 

Employing higher resolution bathymetric sources and more accurate specification of 

Zo is also likely to result in better simulation results. 

Our calibration and validation results can also be improved by using a high-

order scheme with quadratic interpolation, which will reduce numerical diffusion when 

employing ELM for advection of momentum (Wang et al. 2011b). Our current runs 

are performed with a low-order scheme with linear interpolation resulting in first-order 

accuracy for the advection of momentum. Including the influence of the coastal Pacific 

Ocean might also improve our simulation results, however this is a smaller effect as 

our calibration and validation runs are performed in the winter season with high 

freshwater inflows and minimal upwelling. The potential effects of the coastal ocean 

are small particularly in our simulations which are focused on North San Francisco 

Bay. 

The sensitivity analysis determines the effects of horizontal grid resolution, the 

turbulence model and the scalar transport scheme on salinity simulations. An investi

gation into the effect of vertical grid resolution would be valuable to assess the impact 

of varying the stretching ratio of the vertical grid on salinity simulations. Our simu

lations employ z-levels which are stretched in the vertical to provide extra resolution 

at the upper layers in order to resolve the flow in shallow regions of the Bay and in 

the vicinity of the salt wedge at Carquinez Strait, at the expense of under-resolving 

the bottom boundary layer. 

The climate change scenario simulations assess the implications of sea-level rise 

and hydrologic changes on salinity intrusion and estuarine circulation by making the 

assumption of "hard shorelines". The sea-level rise simulations will be more realistic if 

we employ "soft shorelines" in our model, which can be used to determine the impact 

of building dams and levees under various simulation scenarios. The development 

of such models will be extremely valuable for management decisions in planning for 

climate change. 
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Appendix A 

This appendix defines position vectors in the analysis. Defining the position vector 

pointing from centroid of cell Bt to the centroid of cell A3 (see Fig. 4.4) as 5BA = 

SBAex + 5BAey, and r is the distance between Voronoi points of adjacent cells, we 

have 

^xA = -rcos(^-8), 

Sx3
v
A=rsin(l-9), 

€A = r cos h+ 9) , 
(I) 

S^ = rsin(l + 9), 

SixA=rcos^-8), 

^yA = - r ^ \ l - 8 ) . 

Likewise, the components of the position vector showing the relationships between 

the A and B cells, pointing from the centroid of cell Ai (i = 1, 2,3) to that of cell Bx 
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are defined as 

^xB = rcos{^ + 8), 

SiB = -rcos(l + d), 
b (2) 

*ifl = -r sin (£ + *), 

The position vectors pointing from the centroid of cell At (i = 1,2,3,4, 5,6, 7) to that 

of cell A3 are defined as 

5AA = -Alcos(^-8), 

6?A = Alsm(^-d) , 

S$A = -Alcos8, 

5A
y
A = ~Alsm8, 

5iA = 0, 

5AA = Alcos{^ + 8) , 

5AA = Alsin(l + 8), ( 3 ) 

SAA = Alcos8, 

6A
y
A = Alsm8, 

5AA = Alcos(^-d) , 

6AA = -Alsin{^-8) , 

6AA = -Alcos(^ + 9) , 

SAA = -Alsin{^ + 8). 
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